Skip to main content
Log in

Phylogenetic gradient analysis: environmental drivers of phylogenetic variation across ecological communities

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Differences in species composition across ecological communities are the result of multiple interacting mechanisms. Gradient analysis has been perhaps the most widely used statistical framework in describing how ecological communities vary in space, and aiding in determining the causes underlying these patterns. Direct gradient analysis allows the use of predictors such as environmental factors and spatial descriptors to directly estimate their contributions in explaining common and independent patterns of species distributions. In recent years, ecologists have started to explore how evolutionary history is associated with community patterns given the observation that species that share a common phylogenetic history tend also to have similar niches. Although ecological phylogenetics is among the fastest-growing fields in ecology, gradient analysis has not yet been fully integrated in this field. In this paper, we show and adapt the versatility of gradient analysis in describing and interpreting patterns of ecological communities based on their patterns of phylogenetic structure. Describing phylogenetic patterns across communities presents additional challenges regarding statistical inference in contrast to classic direct gradient analysis that are described and tackled here. We investigate the performance of our phylogenetic gradient analysis frameworks using simulations and provide a detailed example using a grassland community dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

  • Brown JH, Ernest SKM, Parody JM, Haskell JP (2001) Regulation of diversity: maintenance of species richness in changing environments. Oecologia 126:321–332

    Article  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Chiu C, Jost L, Chao A (2014) Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecol Monogr 84:21–44

    Article  Google Scholar 

  • Connor EF, Simberloff D (1979) The assembly of species communities: chance or competition? Ecology 60:1132–1140

    Article  Google Scholar 

  • Connor EF, Collins MD, Simberloff D (2013) The checkered history of checkerboard distributions. Ecology 94:2403–2414

    Article  PubMed  Google Scholar 

  • Diamond JM (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard, Belknap

    Google Scholar 

  • Diniz-Filho JAF, Sant’Ana CER, Bini LM (1998) An eigenvector method for estimating phylogenetic inertia. Evolution 52:1247–1262

    Article  Google Scholar 

  • Diniz-filho JAF, Rangel TF, Santos T, Bini LM (2012) Exploring patterns of interespecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution 66:1079–1090

    Article  PubMed  Google Scholar 

  • Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412

  • Dray S, Pélissier R, Couteron P, Fortin M-J, Legendre P, Peres-Neto P-R, Bellier E, Bivand R, Blanchet F-G, De Caceres M, Dufour A-B, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner H-H (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monog 82:257–275

  • Dray S, Choler P, Dolédec S, Peres-Neto PR, Thuiller W, Pavoine S, ter Braak CJF (2014) Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95:14–21

    Article  PubMed  Google Scholar 

  • Duarte LDS, Prieto PV, Pillar VDP (2012) Assessing spatial and environmental drivers of phylogenetic structure in Brazilian Araucaria forests. Ecography 35:952–960

    Article  Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630

  • Fine P, Kembel SW (2011) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34:552–565

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

  • Goodall DW (1954) Objective methods fir the classification of vegetations. III. an essay in the use of factor analysis. Aust J Bot 2:304–324

    Article  Google Scholar 

  • Graham CH, Fine PVA (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol Lett 11:1265–1277

    Article  PubMed  Google Scholar 

  • Graham CH, Parra JL, Rahbek C, McGuire JA (2009) Phylogenetic structure in tropical hummingbird com- munities. Proc Natl Acad Sci USA 106:19673–19678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guénard G, Legendre P, Peres-Neto PR (2013) Phylogenetic eigenvector maps (PEM): a framework to model and predict species traits. Methods Ecol Evol 4:1120–1131

    Article  Google Scholar 

  • Haddad NM, Holyoak M, Mata TM, Davies KF, Melbourne BA, Preston K (2008) Species’ traits predict the effects of disturbance and productivity on diversity. Ecol Lett 11:348–356

    Article  PubMed  Google Scholar 

  • Holyoak M, Leibold MA, Holt RD (2005). A framework for large-scale community ecology. Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 2:157–164

  • Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960

    Article  PubMed  Google Scholar 

  • Kembel SW, Cahill JF (2011) Independent evolution of leaf and root traits within and among temperate grassland plant communities. PLoS One 6:e19992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WL, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kraft N, ornwell W, Webb C, Ackerly D (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283

    Article  PubMed  Google Scholar 

  • Lavorel S, Grigulis K, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A (2008) Assessing functional diversity in the field—methodology matters! Funct Ecol 22:134–147

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multi-species responses in multi-factorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Legendre P, Galzin R, HarmelinVivien ML (1997) Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78:547–562

    Google Scholar 

  • Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monog 75:435–450

  • Leibold MA, Economo EP, Peres-Neto PR (2010) Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecol Lett 13:1290–1299

  • Martins E (1995) Phylogenies and comparative data, a microevolutionary perspective. Philos T R Soc B 349:85–91

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • McGill B, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pavoine S, Ricotta C (2014) Functional and phylogenetic similarity among communities. Methods Ecol Evol 5:666–675

  • Pavoine S, Vela E, Gachet S, de Bélair G, Bonsall MB (2011) Linking patterns in phylogeny, traits, abiotic variables and space : a novel approach to linking environmental filtering and plant community assembly. J Ecol 99:165–175

    Article  Google Scholar 

  • Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci USA 43:18097–18102

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial autocorrelation in the study of ecological communities. Glob Ecol Biogeogr 19:174–184

    Article  Google Scholar 

  • Peres-Neto PR, Leibold MA, Dray S (2012) Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics. Ecology 93:S14–S30

    Article  Google Scholar 

  • Rabosky DL (2006) Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60:1152–1164

    Article  PubMed  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Revell LJ, Collar DC (2009) Phylogenetic analysis of the evolutionary correlation using likelihood. Evolution 63:1090–1100

    Article  PubMed  Google Scholar 

  • Shmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogr 12(1):20

    Article  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector method for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • ter Braak CJF, Cormont A, Dray S (2012) Improved testing of species traits–environment relationships in the fourth-corner problem. Ecology 93:1525–1526

    Article  PubMed  Google Scholar 

  • van den Wollenberg AL (1977) Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42:207–219

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Whitakker RH (1967) Gradient analysis of vegetation. Biol Rev 49:207–264

    Article  Google Scholar 

  • Wieher E, Keddy P (1999) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the National Sciences and Engineering Reearch Council of Canada and the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. Peres-Neto.

Additional information

Communicated by P. R. Minchin and J. Oksanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peres-Neto, P.R., Kembel, S.W. Phylogenetic gradient analysis: environmental drivers of phylogenetic variation across ecological communities. Plant Ecol 216, 709–724 (2015). https://doi.org/10.1007/s11258-014-0405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0405-0

Keywords

Navigation