Skip to main content
Log in

Plant senescence for ecologists: precision in concept, scale, and terminology

Plant Ecology Aims and scope Submit manuscript

Abstract

Plant scientists, conservationists, and land managers have expressed a need for more research into causal mechanisms behind whole-plant senescence and mortality, especially where increased rates and incidence of forest decline are projected owing to climate change. However, these disciplines use the terminology of senescence in different ways, and this impedes communication between them. We highlight three common difficulties with senescence terminology as used in the ecological literature and propose some solutions. Specifically, we recommend (1) distinguishing between physiological and demographic senses of the term “senescence”; (2) discarding the qualifiers “exogenous” and “endogenous” as applied to disturbances that can contribute to senescence; and (3) using care in attributing mortality of individual woody perennials to senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259:660–684

    Article  Google Scholar 

  • Baudisch A, Vaupel JW (2012) Getting to the root of aging. Science 338:618–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baudisch A, Salguero-Gómez R, Jones OR et al (2013) The pace and shape of senescence in angiosperms. J Ecol 101:596–606

    Article  Google Scholar 

  • Borges RM (2009) Phenotypic plasticity and longevity in animals and plants: cause and effect? J Biosci 34:605–611

    Article  PubMed  Google Scholar 

  • Brutovská E, Sámelová A, Dušička J et al (2013) Ageing of trees: application of general ageing theories. Ageing Res Rev 12:855–866

    Article  PubMed  Google Scholar 

  • Burns SL, Goya JF, Arturi MF et al (2013) Stand dynamics, spatial pattern and site quality in Austrocedrus chilensis forests in Patagonia, Argentina. Forest Syst 22:170–178

    Article  Google Scholar 

  • Carey EV, Brown S, Gillespie AJR et al (1994) Tree mortality in mature lowland tropical moist and tropical lower montane moist forests of Venezuela. Biotropica 26:255–265

    Article  Google Scholar 

  • Caspersen JP, Kobe RK (2001) Interspecific variation in sapling mortality in relation to growth and soil moisture. Oikos 92:160–168

    Article  Google Scholar 

  • Caspersen JP, Vanderwel MC, Cole WG et al (2011) How stand productivity results from size- and competition-dependent growth and mortality. PLoS ONE 6:e28660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caswell H, Salguero-Gómez R (2013) Age, stage and senescence in plants. J Ecol 101:585–595

    Article  PubMed Central  PubMed  Google Scholar 

  • Chao K-J, Phillips OL, Gloor E et al (2008) Growth and wood density predict tree mortality in Amazon forests. J Ecol 96:281–292

    Article  Google Scholar 

  • Chao K-J, Phillips OL, Monteagudo A et al (2009) How do trees die? Mode of death in northern Amazonia. J Veg Sci 20:260–268

    Article  Google Scholar 

  • Coomes DA, Duncan RP, Allen RB et al (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol Lett 6:980–989

    Article  Google Scholar 

  • Das A, Battles J, Stephenson N et al (2011) The contribution of competition to tree mortality in old-growth coniferous forests. For Ecol Manag 261:1203–1213

    Article  Google Scholar 

  • Gara RI, Geiszler DR, Littke WR (1984a) Primary attraction of the mountain pine beetle to lodgepole pine in Oregon. Ann Entomol Soc Am 77:333–334

    Google Scholar 

  • Gara RI, Littke WR, Agee JK et al (1984b) Influence of fires, fungi and mountain pine beetles on development of a lodgepole pine forest in south-central Oregon. In: Baumgartner DM (ed) Lodgepole pine: the species and its management. Washington State University Cooperative Extension, Spokane

    Google Scholar 

  • Garcia MB, Dahlgren JP, Ehrlén J (2011) No evidence of senescence in a 300 year-old mountain herb. J Ecol 99:1424–1430

    Article  Google Scholar 

  • Guglielmo F, Bergemann SE, Gonthier P et al (2007) A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees. J Appl Microbiol 103:1490–1507

    Article  CAS  PubMed  Google Scholar 

  • Herrera CM, Jovani R (2010) Lognormal distribution of individual lifetime fecundity: insights from a 23 year study. Ecology 91:422–430

    Article  PubMed  Google Scholar 

  • Iida Y, Kohyama T, Swenson NG et al (2014) Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. J Ecol 102:541–650

    Article  Google Scholar 

  • Jenkins MA, Pallardy SG (1995) The influence of drought on red oak species growth and mortality in the Missouri Ozarks. Can J Forest Res 25:1119–1127

    Article  Google Scholar 

  • Jones OR, Scheuerlein A, Salguero-Gómez R et al (2014) Diversity of ageing across the tree of life. Nature 505:169–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CA, Voelker S, Holdo RM et al (2014) Tree architecture as a predictor of growth and mortality after an episode of red oak decline in the Ozark Highlands of Missouri, USA. Can J For Res 44:1005–1012

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H MacArthur award lecture. Ecology 73:1943–1967

    Article  Google Scholar 

  • Lines ER, Coomes DA, Purves DW (2010) Influences of forest structure, climate and species composition on tree mortality across the eastern US. PLoS ONE 5:e13212

    Article  PubMed Central  PubMed  Google Scholar 

  • Loehle C (1988) Tree life history strategies: the role of defenses. Can J For Res 18:209–220

    Article  Google Scholar 

  • Lorimer CG, Dahir SE, Nordheim EV (2001) Tree mortality rates and longevity in mature and old-growth hemlock-hardwood forests. J Ecol 89:960–971

    Article  Google Scholar 

  • Manion PD (1981) Tree disease concepts. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Mencuccini M, Martinez-Vilalta J, Vanderklein D et al (2005) Size-mediated ageing reduces vigour in trees. Ecol Lett 8:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Mencuccini M, Martinez-Vilalta J, Hamid HA et al (2007) Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol 27:463–473

    Article  PubMed  Google Scholar 

  • Mueller RC, Scudder CM, Porter ME et al (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093

    Article  Google Scholar 

  • Mueller-Dombois D (1987) Natural dieback in forests. Bioscience 37:575–583

    Article  Google Scholar 

  • Mueller-Dombois D (1992) A natural dieback theory, cohort senescence as an alternative to the decline disease theory. In: Manion PD, Lachance D (eds) Forest decline concepts. APS Press, St. Paul

    Google Scholar 

  • Munné-Bosch S (2008) Do perennials really senesce? Trends Plant Sci 13:216–220

    Article  PubMed  Google Scholar 

  • Nooden LD (1988) The phenomena of senescence and aging. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego

    Google Scholar 

  • Oak S, Tainter F, Williams J et al (1996) Oak decline risk rating for the southeastern United States. Ann Forest Sci 53:721–730

    Article  Google Scholar 

  • Oliver CD, Larson BC (1996) Forest stand dynamics. John Wiley & Sons, New York

    Google Scholar 

  • Pacala SW, Canham CD, Saponara J et al (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 66:1–43

    Article  Google Scholar 

  • Parfitt D, Hunt J, Dockrell D et al (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3:338–346

    Article  Google Scholar 

  • Putz FE, Parker GG, Archibald RM (1984) Mechanical abrasion and intercrown spacing. Am Midl Nat 112:24–28

    Article  Google Scholar 

  • Roach DA (2012) Age, growth and size interact with stress to determine life span and mortality. Exp Gerontol 47:782–786

    Article  PubMed Central  PubMed  Google Scholar 

  • Roach DA, Ridley CE, Dudycha JL (2009) Longitudinal analysis of Plantago: age-by-environment interactions reveal aging. Ecology 90:1427–1433

    Article  PubMed Central  PubMed  Google Scholar 

  • Ryan MG, Waring RH (1992) Maintenance respiration and stand development in a subalpine lodgepole pine forest. Ecology 73:2100–2108

    Article  Google Scholar 

  • Salguero-Gómez R, Shefferson RP, Hutchings MJ (2013) Plants do not count. or do they? New perspective on the universality of senescence. J Ecol 101:545–554

    Article  PubMed Central  PubMed  Google Scholar 

  • Shefferson RP, Roach DA (2013) Longitudinal analysis in Plantago: strength of selection and reverse age analysis reveal age-indeterminate senescence. J Ecol 101:577–584

    Article  Google Scholar 

  • Silvertown J, Franco M, Perez-Ishiwara R (2001) Evolution of senescence in iteroparous perennial plants. Evol Ecol Res 3:393–412

    Google Scholar 

  • Stephenson NL, Van Mantgem PJ, Bunn AG et al (2011) Causes and implications of the correlation between forest productivity and tree mortality rates. Ecol Monogr 81:427–555

    Article  Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711

    Article  PubMed  Google Scholar 

  • Toledo JJ, Magnusson WE, Castilho CV (2013) Competition, exogenous disturbances and senescence shape tree size distributions in tropical forest: evidence from tree mode of death in central Amazonia. J Veg Sci 24:651–663

    Article  Google Scholar 

  • Tuomi J, Crone EE, Gremer JR et al (2013) Prolonged dormancy interacts with senescence for two perennial herbs. J Ecol 101:566–576

    Article  Google Scholar 

  • Van Dijk H (2009) Ageing effects in an iteroparous plant species with a variable life span. Ann Bot 104:115–124

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaupel JW, Baudisch A, Dolling M et al (2004) The case for negative senescence. Theor Popul Biol 65:339–351

    Article  PubMed  Google Scholar 

  • Voelker SL, Muzika R-M, Guyette RP (2008) Individual tree and stand level influences on the growth, vigor, and decline of red oaks in the Ozarks. Forest Sci 54:8–20

    Google Scholar 

  • Wang X, Comita LS, Hao Z et al (2012) Local-scale drivers of tree survival in a temperate forest. PLoS ONE 7:e29469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weste G (2003) The dieback cycle in Victorian forests: a 30 year study of changes caused by Phytophthora cinnamomi in Victorian open forests, woodlands and heathlands. Australas Plant Path 32:247–256

    Article  Google Scholar 

  • Xu C-Y, Turnbull MH, Tissue DT et al (2012) Age-related decline of stand biomass accumulation is primarily due to mortality and not to reduction in NPP associated with individual tree physiology, tree growth or stand structure in a Quercus-dominated forest. J Ecol 100:428–440

    Article  Google Scholar 

  • Yoder BJ, Ryan MG, Waring RH et al (1994) Evidence of reduced photosynthetic rates in old trees. For Sci 40:513–527

    Google Scholar 

  • Zeppel MJB, Anderegg WRL, Adams HD (2013) Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. New Phytol 197:372–374

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Stephen Pallardy, Roberto Salguero-Gómez, and an additional anonymous reviewer for constructive comments on this manuscript and the University of Missouri Life Sciences Fellowship for monetary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Lee.

Additional information

Communicated by N. J. Enright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.A., Muzika, RM. Plant senescence for ecologists: precision in concept, scale, and terminology. Plant Ecol 215, 1417–1422 (2014). https://doi.org/10.1007/s11258-014-0398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0398-8

Keywords

Navigation