Skip to main content
Log in

Phylogenetic structure of a palm community in the central Amazon: changes along a hydro-edaphic gradient

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The concepts of phylogenetic community structure (PCS) and phylogenetic niche conservatism (PNC) allow ecologists to address the role of species’ evolutionary history in community assembly. It is important to test the role of historical legacies relative to environmental constraints at local scales, where communities are assembled. We studied phylogenetic structure and niche conservatism for palms (Arecaceae) in the 64-km2 Ducke Reserve in the central Amazon, near Manaus. The 72 study plots, each covering 0.1 ha, were distributed regularly in a terra firme forest along a hydro-edaphic gradient. We compared the observed palm PCS with assemblages generated by null models. We also analyzed whether morphological and ecological traits are labile or conserved along the phylogeny and quantified the spatial structure of morphological traits in each plot. We found an overall neutral PCS in combination with low PNC (labile traits), suggesting that evolutionary history poses little constraint on palm community assembly in this Amazonian landscape. Still, there was a tendency towards phylogenetic overdispersion in bottomlands, suggesting competitive exclusion among close relatives or, more likely, environmental filtering acting on convergent traits that affect co-occurrence in flood-prone areas. We conclude that (1) PCS of local communities is random as a whole and morphological traits are overall labile, but that (2) the hydro-edaphic gradient within terra firme forests leads to differences in species co-occurrence so that closely related species occur less often than expected in bottomlands due to diffuse competition among close relatives or environmental filtering on convergent traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker WJ, Savolainen V, Asmussen-Lange CB, Chase MW, Dransfield J, Forest V, Harley MM, Uhl NW, Wilkinson M (2009) Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. Syst Biol 58:240–256

    Article  PubMed  Google Scholar 

  • Bell G (2001) Neutral macroecology. Science 293:2413–2418

    Article  PubMed  CAS  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Bueno AS, Bruno RS, Pimentel TP, Sanaiotti TM, Magnusson WE (2012) The width of riparian habitats for understory birds in an Amazonian forest. Ecol Appl 22:722–734

    Article  PubMed  Google Scholar 

  • Cahill JF, Kembel SW, Lamb EG, Keddy PA (2008) Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspect Plant Ecol Evol Syst 10:41–50

    Article  Google Scholar 

  • Castilho CV, Magnusson WE, Araújo RNO, Luizão RCC, Luizão FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian forest: effects of soil and topography. For Ecol Manag 234:85–96

    Article  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Costa FRC, Magnusson WE, Luizão RC (2005) Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds. J Ecol 93:863–878

    Article  CAS  Google Scholar 

  • Costa FRC, Guillaumet JL, Lima AP, Pereira OS (2009) Gradients within gradients: the mesoscale distribution patterns of palms in a central Amazonian forest. J Veg Sci 20:69–78

    Article  Google Scholar 

  • Couvreur TLP, Baker WJ (2013) Tropical rain forest evolution: palms as a model group. BMC Biol 11:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Couvreur TLP, Forest F, Baker WJ (2011) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Crisp MD, Cook LG (2012) Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol 196:681–694

    Article  PubMed  Google Scholar 

  • Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum. Kew Publishing, Kew

    Google Scholar 

  • Drucker DP, Costa FRC, Magnusson WE (2008) How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs. J Trop Ecol 24:65–74

    Article  Google Scholar 

  • Eiserhardt WL, Pintaud JC, Asmussen-Lange C, Hahn WJ, Bernal R, Balslev H, Borchsenius F (2011a) Phylogeny and divergence times of Bactridinae (Arecaceae, Palmae) based on plastid and nuclear DNA sequences. Taxon 60(2):485–498

    Google Scholar 

  • Eiserhardt WL, Svenning JC, Kissling WD, Balslev H (2011b) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Ann Bot 108(8):1391–1416

    Article  PubMed  PubMed Central  Google Scholar 

  • Eiserhardt WL, Svenning JC, Borchsenius F, Kristiansen T, Balslev H (2013) Separating environmental and geographical determinants of phylogenetic community structure in Amazonian palms (Arecaceae). Bot J Linn Soc 171:244–259

    Article  Google Scholar 

  • Fine PVA, Kembel SW (2011) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34:552–565

    Article  Google Scholar 

  • Fine PVA, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665

    Article  PubMed  CAS  Google Scholar 

  • Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Sääksjärvi I, Schultz JC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–S162

    Article  PubMed  Google Scholar 

  • Fortin MJ, Dale MRT, Hoef JV (2002) Spatial analysis in ecology. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, vol 4. Wiley, Chichester, pp 2051–2058

    Google Scholar 

  • Freitas CG, Costa FRC, Svenning JC, Balslev H (2012) Topographic separation of two sympatric palms in the central Amazon—does dispersal play a role? Acta Oecol 39:128–135

    Article  Google Scholar 

  • Gotelli NJ, Entsminger GL (2003) Swap algorithms in null model analysis. Ecology 84:532–535

    Article  Google Scholar 

  • Helmus MR, Savage K, Diebel MW, Maxted JT, Ives AR (2007) Separating the determinants of phylogenetic community structure. Ecol Lett 10:917–925

    Article  PubMed  Google Scholar 

  • Henderson A (1995) The palms of the Amazon. Oxford University Press, New York

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Kahn F (1987) The distribution of palms as a function of local topography in Amazonian terra firme forests. Experientia 43:251–259

    Article  Google Scholar 

  • Kahn F, Castro A (1985) The palm community in a forest of Central Amazonia, Brazil. Biotropica 17:210–216

    Article  Google Scholar 

  • Kahn F, Granville JJ (1992) Palms in forest ecosystems of Amazonia. Ecological studies, vol 95. Springer, Berlin, pp 1–223

  • Kembel SW (2009) Disentangling niche and neutral influences on community assembly: Assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960

    Article  PubMed  Google Scholar 

  • Kembel SW, Hubbell SP (2006) The phylogenetic structure of a Neotropical forest tree community. Ecology 87:S86–S99

    Article  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  PubMed  CAS  Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283

    Article  PubMed  Google Scholar 

  • Kristiansen T, Svenning JC, Eiserhardt WL, Pedersen D, Brix H, Kristiansen SM, Knadel M, Grández C, Balslev H (2012) Environment versus dispersal in the assembly of western Amazonian palm communities. J Biogeogr 39:1318–1332

    Article  Google Scholar 

  • Landeiro VL, Magnusson WE, Melo AS, Espírito-Santo HMV, Bini LM (2011) Spatial eigenfunction analyses in stream networks: Do watercourse and overland distances produce different results? Freshw Biol 56:1184–1192

    Article  Google Scholar 

  • Losos J (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1007

    Article  PubMed  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G, Silveira A, Waterloo M, Saleska S (2011) Height above the nearest drainage—a hydrologically relevant new terrain model. J Hydrol 404:13–29

    Article  Google Scholar 

  • Pianka ER (1974) Niche overlap and diffuse competition. PNAS 71:2141–2145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440

    Article  CAS  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/

  • Rabosky DL, Reid J, Cowan MA, Foulkes J (2007) Overdispersion of body size in Australian desert lizard communities at local scales only: No evidence for the Narcissus effect. Oecologia 154:561–570

    Article  PubMed  Google Scholar 

  • Rennó CD, Nobre AD, Cuartas LA, Soares JV, Hodnett MG, Tomasella J (2008) HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens Environ 112:3469–3481

    Article  Google Scholar 

  • Ribeiro JELS, Hopkins MJG, Vicentini A, Sothers CA, Costa MAS, Brito JM, Souza MAD, Martins LHP, Lohmann LG, Assunção PACL, Pereira EC, Silva CF, Mesquita MR, Procópio LC (1999) Flora da Reserva Ducke: Guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia central. Instituto Nacional de Pesquisas da Amazônia, Manaus

    Google Scholar 

  • Roncal J, Blach-Overgaard A, Borchsenius F, Balslev H, Svenning JC (2011) A dated phylogeny complements macroecological analysis to explain the diversity patterns in Geonoma (Arecaceae). Biotropica 43:324–334

    Article  Google Scholar 

  • Roncal J, Henderson A, Borchsenius F, Cardoso SRS, Balslev H (2012) Can phylogenetic signal, character displacement, or random phenotypic drift explain the morphological variation in the genus Geonoma (Arecaceae)? Biol J Linn Soc 106:528–539

    Article  Google Scholar 

  • Roncal J, Kahn F, Millan B, Couvreur TLP, Pintaud JC (2013) Cenozoic colonization and diversification patterns of tropical American palms: evidence from Astrocaryum (Arecaceae). Bot J Linn Soc 171:120–139

    Article  Google Scholar 

  • Rosindell J, Hubbell SP, He F, Harmon LJ, Etienne RS (2012) The case for ecological neutral theory. TREE 27(4):203–208

    PubMed  Google Scholar 

  • Schietti J, Emilio T, Rennó CD, Drucker DP, Costa FRC, Nogueira A, Baccaro FB, Figueiredo F, Castilho CV, Kinupp V, Guillaumet JL, Garcia ARM, Lima A, Magnusson WE (2014) Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol Div 7:1–13

  • Silvertown J, Dodd M, Gowing D, Lawson C, McConway K (2006) Phylogeny and the hierarchical organization of plant diversity. Ecology 87:S39–S49

    Article  PubMed  Google Scholar 

  • Svenning JC (2001) On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot Rev 66:1–53

    Article  Google Scholar 

  • Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 34:271–317

    Article  Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244

    Article  PubMed  CAS  Google Scholar 

  • Violle C, Nemergut DR, Pu Z, Jiang L (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol Lett 14:782–787

    Article  PubMed  Google Scholar 

  • Vormisto J, Tuomisto H, Oksanen J (2004) Palm distribution patterns in Amazonian rainforests: What is the role of topographic variation? J Veg Sci 15:485–494

    Article  Google Scholar 

  • Webb C (2000) Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. Am Nat 156:145–155

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Programa de Pesquisas em Biodiversidade (PPBio) and INPA for logistic support, the CNPq (575637/2008-0; 473474/2008-5) for financial support, and CAPES/PDEE for a doctoral scholarship to CGF. We also thank Jean Louis Guillaumet for the palm database. HB’s and JCS’s work on palms is supported by grants from the Danish Natural Science Research Council (10-083348; 10-083348; 12-125079) and from the European Commission (Contract No. 212631).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cíntia Gomes de Freitas.

Additional information

Communicated by J. N. Mast.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, C.G., de Sales Dambros, C., Eiserhardt, W.L. et al. Phylogenetic structure of a palm community in the central Amazon: changes along a hydro-edaphic gradient. Plant Ecol 215, 1173–1185 (2014). https://doi.org/10.1007/s11258-014-0376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-014-0376-1

Keywords

Navigation