Skip to main content
Log in

Geomorphological disturbance affects ecological driving forces and plant turnover along an altitudinal stress gradient on alpine slopes

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The altitudinal gradient is considered as a stress gradient for plant species because the development and fitness of plant communities tend to decrease as a result of the extreme environmental conditions present at high elevations. Abiotic factors are predicted to be the primary filter for species assemblage in high alpine areas, influencing biotic interactions through both competition for resources and positive interactions among species. We hypothesised that the relative importance of the ecological driving forces that affect the biotic interactions within plant communities changes along an elevation gradient on alpine debris slopes. We used multiple gradient analyses of 180 vegetation plots along an altitudinal range from ~1,600 to 2,600 m and single 100 m-bands in the Adamello-Presanella Group (Central Alps) to investigate our hypothesis; we measured multiple environmental variables related to different ecological driving forces. Our results illustrate that resource limitations at higher elevations affect not only the shift from competition to facilitation among species. A geomorphological disturbance regime along alpine slopes favours the resilience of the high-altitude species within topographic/geomorphological traps. An understanding of the ecological driving forces and positive interactions as a function of altitude may clarify the mechanisms underlying plant responses to present and future environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baroni C, Carton A, Seppi R (2004) Distribution and behaviour of rock glaciers in the Adamello-Presanella Massif (Italian Alps). Permafr Periglac 15:243–259

    Article  Google Scholar 

  • Baroni C, Armiraglio S, Gentili R, Carton A (2007) Landforms-vegetation units for recostructing the geomorphologic evolution of composite alpine debris cones (Valle dell’Avio, Adamello Group, Italy). Geomorphology 84:59–79

    Article  Google Scholar 

  • Baroni C, Armiraglio S, Gentili R (2013) Vegetation analysis on composite debris cones. In: Bollschweiler M, Stoffel M Miklau FR (eds) Tracking torrential processes on fans and cones. Advances in Global Change Research, vol 47. Springer, Dordrecht, p 187–201

  • Becker A, Körner C, Brun JJ, Guisan A, Tappeiner U (2007) Ecological and land use studies along elevational gradients. Mt Res Dev 27:58–65

    Article  Google Scholar 

  • Bertness J, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  PubMed  CAS  Google Scholar 

  • Boggs K, Klein SC, Grunblatt J, Boucher T, Koltun B, Sturdy M, Streveler GP (2010) Alpine and subalpine vegetation chronosequences following deglaciation in coastal Alaska. Arct Antarct Alp Res 42:385–395

    Article  Google Scholar 

  • Brooker RW, Callaghan TV (1998) The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos 81:196–207

    Article  Google Scholar 

  • Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA et al (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34

    Article  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Butterfield BJ (2009) Effects of facilitation on community stability and dynamics: synthesis and future directions. J Ecol 97:1192–1201

    Article  Google Scholar 

  • Caccianiga M, Luzzaro A, Pierce S, Ceriani RM, Cerabolini B (2006) The functional basis of a primary succession resolved by CSR classification. Oikos 112:10–20

    Article  Google Scholar 

  • Caccianiga M, Andreis C, Diolaiuti G, D’Agata C, Mihalcea C, Smiraglia C (2011) Alpine debris-covered glaciers as a habitat for plant life. Holocene 21:1011–1020

    Article  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  PubMed  CAS  Google Scholar 

  • Callegari E, Brack P (2002) Geological map of the Tertiary Adamello batholith (Northern Italy). Explanatory notes and legend. Mem Sci Geol 54:19–49

    Google Scholar 

  • Cerabolini BEL, Brusa G, Ceriani RM, De Andreis R, Luzzaro A, Pierce S (2010) Can CSR classification be generally applied outside Britain? Plant Ecol 210:253–261

    Article  Google Scholar 

  • Conti F, Abbate G, Alessandrini A, Blasi C (2005) An annotated checklist of the Italian vascular flora. Palombi Editore, Roma

    Google Scholar 

  • Deffossez E, Courbaud B, Marcais B, Thuiller W, Granda E, Kunstler G (2011) Do interactions between plant and soil biota change with elevation? A study on Fagus sylvatica. Biol Lett 7:699–701

    Article  Google Scholar 

  • Ellenberg H (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobot. 9. Göttingen, Germany

  • Erschbamer B (2007) Winners and losers of climate change in a central alpine glacier foreland. Arct Antarct Alp Res 39:237–244

    Article  Google Scholar 

  • Erschbamer B, Kiebacher T, Mallaun M, Unterluggauer P (2009) Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecol 202:79–89

    Article  Google Scholar 

  • Gentili R, Armiraglio S, Rossi G, Sgorbati S, Baroni C (2010) Floristic patterns, ecological gradients and biodiversity in the composite channels (Central Alps, Italy). Flora 205:388–398

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystems properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Holmgren M, Scheffer M (2010) Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol 98:1269–1275

    Article  Google Scholar 

  • Kienast F, Wildi O, Brzeziecki B (1998) Potential impact of climate change on species richness in mountain forest—an ecological risk assessment. Biol Conserv 83:291–305

    Article  Google Scholar 

  • Klimeš L (2003) Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic Appl Ecol 4:317–328

    Article  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205

    Article  Google Scholar 

  • Martens SN, Breshears DD, Barnes FJ (2001) Development of species dominance along elevational gradient: population dynamics of Pinus edulis and Juniperus monosperma. Int J Plant Sci 162:777–783

    Article  Google Scholar 

  • Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröffentlichungen des Geobotanischen Institutes der ETH Stiftung Rübel, Zürich 85, pp 1–263

  • Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–220

    Article  PubMed  Google Scholar 

  • Odland A (2009) Interpretation of altitudinal gradients in South Central Norway based on vascular plants as environmental indicators. Ecol Indic 9:409–421

    Article  Google Scholar 

  • Oksanen L, Ranta E (1992) Plant strategies along mountain vegetation gradients: a test of two theories. J Veg Sci 3:175–186

    Article  Google Scholar 

  • Pellissier L, Fournier B, Guisan A, Vittoz P (2010) Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecol 211:351–365

    Article  Google Scholar 

  • Pérez FL (1998) Conservation of soil moisture by different stone covers on alpine talus slopes (Lassen, California). Catena 33:155–177

    Article  Google Scholar 

  • Raffl C, Mallaun M, Mayer R, Erschbamer B (2006) Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct Antarct Alp Res 38:421–428

    Article  Google Scholar 

  • Restrepo C, Walker LR, Shiels AB et al (2009) Landsliding and its multiscale influence on mountainscapes. Bioscience 59:685–698

    Article  Google Scholar 

  • Sanjerehei MM, Jafari M, Mataji A, Meybodi NB, Bihamta MR (2011) Facilitative and competitive interactions between plant species (an example from Nodushan rangelands, Iran). Flora 206:631–637

    Article  Google Scholar 

  • Sardinero S (2000) Classification and ordination of plant communities along an altitudinal gradient on the Presidential Range, New Hampshire, USA. Plant Ecol 148:81–103

    Article  Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Tilman D (1982) Resource competition and community structure, monographs in population biology. Princeton University Press, Princeton

    Google Scholar 

  • Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849

    Article  PubMed  Google Scholar 

  • Vittoz P, Engler R (2007) Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot Helvetica 117:109–124

    Article  Google Scholar 

  • Vittoz P, Camenisch M, Mayor R, Miserere L, Vust M, Theurillat J-P (2010) Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot Helvetica 120:139–149

    Article  Google Scholar 

  • Wamelink GWW, Joosten V, van Dobben HF, Berendse F (2002) Validity of Ellenberg indicator values judged from physico-chemical field measurements. J Veg Sci 13:269–278

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Università of Milano-Bicocca, Università of Pisa, Museo di Scienze Naturali di Brescia and by the Italian MIUR Project (PRIN 2010-11): “Response of morphoclimatic system dynamics to global changes and related geomorphological hazards” (national and local coordinator C. Baroni). The authors would like to thank the anonymous reviewers for their constructive comments which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Gentili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table ST1

Climatic data from 13 meteorological stations of the Adamello-Presanella Group. (XLS 28 kb)

Table ST2

Species, dispersal strategies (DS) and Grime’s CSR strategies. (XLS 51 kb)

Table ST3

List of species abbreviation (XLS 24 kb)

Table ST4

Contribution to dissimilarity (Bray–Curtis index), according to the SIMPER analysis of the first nine species per band and of the first 19 species for the whole altitudinal range. Abbreviations: see Table ST3. (XLS 22 kb)

Figure SF1

Whole set of the CCA analyses (for all altitudinal bands). (TIFF 2696 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentili, R., Armiraglio, S., Sgorbati, S. et al. Geomorphological disturbance affects ecological driving forces and plant turnover along an altitudinal stress gradient on alpine slopes. Plant Ecol 214, 571–586 (2013). https://doi.org/10.1007/s11258-013-0190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-013-0190-1

Keywords

Navigation