Skip to main content
Log in

Micro-evolutionary patterns of juvenile wood density in a pine species

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Wood density can be considered an adaptive trait, because it ensures the safe and efficient transport of water from the roots to the leaves, mechanical support for the body of the plant and the storage of biological chemicals. Its variability has been extensively described in narrow genetic backgrounds and in wide ranges of forest tree species, but little is known about the extent of natural genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for the evaluation of its inclusion in breeding programs. We assessed juvenile wood density, leaf area, total aboveground biomass, and growth in six Pinus pinaster populations of different geographic origins (France, Spain, and Morocco) growing in a provenance-progeny trial. No genetic differentiation was found for wood density, whereas all other traits significantly differed between populations. Heritability of this trait was moderate, with a low additive genetic variance. For retrospective identification of the evolutionary forces acting on juvenile wood density, we compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST). We found that Q ST was significantly lower than F ST, suggesting evolutionary stasis. Furthermore, we did not detect any relationship between juvenile wood density and drought tolerance (resistance to cavitation), suggesting that this trait could not be used as a proxy for drought tolerance at the intraspecific level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguiar A, Almeida MH, Borralho N (2003) Genetic control of growth, wood density and stem characteristics of Pinus pinaster in Portugal. Genetica 11:131–139

    Google Scholar 

  • Apiolaza LA (2011) Basic density of radiata pine in New Zealand: genetic and environmental factors. Tree Genet. Genomes. doi:10.1007/s11295-011-0423-1

  • Apiolaza LA, Garrick DJ (2001) Analysis of longitudinal data from progeny tests: some multivariate approaches. For Sci 47:129–140

    Google Scholar 

  • Bouffier L, Rozenberg P, Raffin A, Kremer A (2008) Wood density variability in successive breeding populations of maritime pine. Can J For Res 38:2148–2158

    Article  Google Scholar 

  • Bradshaw AD (1991) The Croonian Lecture, 1991. Genostasis and the limits to evolution. Philos Trans R Soc Lond B 333:289–305

    Article  CAS  Google Scholar 

  • Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584

    Article  PubMed  CAS  Google Scholar 

  • Burban C, Petit RJ (2003) Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Mol Ecol 12:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Chave J, Muller-Landau HC, Baker TR, Easdale TA, Ter Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367

    Article  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Corcuera L, Cochard H, Gil-Pelegrin E, Notivol E (2011) Phenotypic plasticity in mesic populations of Pinus pinaster improves resistance to xylem embolism (P50) under severe drought. Trees. doi:10.1007/s00468-011-0578-2

  • Creese C, Benscoter A, Maherali H (2011) Xylem function and climate adaptation in Pinus. Am J Bot 98(9):1437–1445

    Article  PubMed  Google Scholar 

  • Dalla-Salda G, Martinez-Meier A, Cochard H, Rozenberg P (2011) Genetic variation of xylem hydraulic properties shows that wood density is involved in adaptation to drought in Douglas-fir (Pseudotsuga menziesii (Mirb.)). Ann For Sci 68:747–757

    Article  Google Scholar 

  • Delzon S, Douthe C, Sala A, Cochard H (2010) Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant Cell Environ 33:2101–2111

    Article  PubMed  Google Scholar 

  • Eveno E (2008) L’adaptation à la sécheresse chez le pin maritime (Pinus pinaster): patrons de diversité et différenciation nucléotidiques de gènes candidats et variabilité de caractères phénotypiques. Thesis, University of Bordeaux 1, pp 1–390

  • Eveno E, Collada C, Guevara MA, Léger V, Soto A, Díaz L, Léger P, González-Martínez SC, Cervera MT, Plomion C et al (2008) Contrasting patterns of selection at Pinus pinaster drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25:417–437

    Article  PubMed  CAS  Google Scholar 

  • Figueroa JA, Lusk CH (2001) Germination requirements and seedling shade tolerance are not correlated in a Chilean temperate rain forest. New Phytol 152:483–489

    Article  Google Scholar 

  • Gapare WJ, Ivković M, Baltunis BS, Matheson CA, Wu HX (2009) Genetic stability of wood density and diameter in Pinus radiata D. Don plantation estate across Australia. Tree Genet Genomes 6:113–125

    Article  Google Scholar 

  • Gilchrist AS, Partridge L (2001) The contrasting genetic architecture of wing size and shape in Drosophila melanogaster. Heredity 86:144–152

    Article  PubMed  CAS  Google Scholar 

  • Goudet J, Buchi L (2006) The effects of dominance, regular inbreeding and sampling design on QST, an estimator of population differentiation for quantitative traits. Genet. 172:1337–1347

    Article  Google Scholar 

  • Gould SJ, Lewontin RC (1979) Spandrels of San-Marco and the panglossian paradigm—a critique of the adaptationist program. Proc R Soc Lond B 205:581–598

    Article  PubMed  CAS  Google Scholar 

  • Guay R, Gagnon R, Morin H (1992) A new automatic and interactive tree ring measurement system based on a line scan camera. For. Chron. 68:138–141

    Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115

    Article  Google Scholar 

  • Hansen TF, Houle D (2004) Evolvability, stabilizing selection and the problem of stasis. In: Pigliucci M, Preston K (eds) The evolutionary biology of complex phenotypes. Oxford University Press, Oxford, pp 1–27

    Google Scholar 

  • Houle D (1992) Comparing evolvabiliy and variability of quantitative traits. Genet. 130:195–204

    CAS  Google Scholar 

  • Jansen S, Lamy J-B, Burlett R, Cochard H, Gasson P, Delzon S (2012) Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Plant and cell Environ. doi: 10.1111/j.1365-3040.2011.02476.x

  • Jaramillo-Correa JP, Beaulieu J, Bousquet J (2001) Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Mol Ecol 10:2729–2740

    Article  PubMed  CAS  Google Scholar 

  • Knap PW (2005) Breeding robust pigs. Aust J Exp Agric 45:763–773

    Article  Google Scholar 

  • Kosorok MR (1999) Two-sample quantile tests under general conditions. Biometrika 86:909–921

    Article  Google Scholar 

  • Lamy J-B, Bouffier L, Burlett R, Plomion C, Cochard H, Delzon S (2011) Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS ONE 6:e23476

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of theory of selective neutrality of polymorphisms. Genetics 74:175–195

    PubMed  CAS  Google Scholar 

  • Littell RC, Pendergast J, Natarajan R (2000) Modelling covariance structure in the analysis of repeated measures data. Stat Med 19:1793–1819

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Fanjul C, Fernandez A, Toro MA (2007) The effect of dominance on the use of the QST-FST contrast to detect natural selection on quantitative traits. Genetics 176:725–727

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, pp 1–980

    Google Scholar 

  • Markesteijn L, Poorter L, Bongers F, Paz H, Sack L (2011) Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. N Phytol 191:480–495

    Article  Google Scholar 

  • Martinez-Meier A, Sanchez L, Pastorino M, Gallo L, Rozenberg P (2008) What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave. For Ecol Manag 256:837–843

    Article  Google Scholar 

  • Martinez-Meier A, Gallo L, Pastorino M, Mondino V, Rozenberg P (2011) Phenotypic variation of basic wood density in Pinus ponderosa plus trees. Bosque (Valdivia) 32:221–226

    Article  Google Scholar 

  • Martinez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nole A, Poyatos R et al (2009) Hydraulic adjustment of Scots pine across Europe. N Phytol 184:353–364

    Article  CAS  Google Scholar 

  • McCulloh KA, Meinzer FC, Sperry JS, Lachenbruch B, Voelker SL, Woodruff DR, Domec J-C (2011) Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density. Oecologia 167:27–37

    Article  PubMed  Google Scholar 

  • Milton CC, Huynh B, Batterham P, Rutherford SL, Hoffmann AA (2003) Quantitative trait symmetry independent of Hsp90 buffering: distinct modes of genetic canalization and developmental stability. Proc Natl Acad Sci USA 100:13396–13401

    Article  PubMed  CAS  Google Scholar 

  • Mormede P, Foury A, Terenina E, Knap PW (2011) Breeding for robustness: the role of cortisol. Animal 5:651–657

    Article  PubMed  CAS  Google Scholar 

  • O’Hara RB, Merilä J (2005) Bias and precision in QST estimates: problems and some solutions. Genetics 171:1331–1339

    Article  PubMed  Google Scholar 

  • Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214

    Article  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Polge H (1966) Etablissement des courbes de variation de la densité du bois par exploration densitométrique de radiographie d’échantillons prélevés à la tarière sur des arbres vivants. Ann Sci For 23:1–206

    Article  Google Scholar 

  • Poorter L, McDonald I, Alarcon A, Fichtler E, Licona JC, Pena-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. N Phytol 185:481–492

    Article  Google Scholar 

  • Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002) Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11:869–877

    Article  PubMed  CAS  Google Scholar 

  • Richardson DM (1998) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 1–527

    Google Scholar 

  • Rosner S, Klein A, Müller U, Karlsson B (2008) Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood. Tree Physiol 28:1179–1188

    Article  PubMed  Google Scholar 

  • Sangster TA, Salathia N, Undurraga S, Milo R, Schelienberg K, Lindquist S, Queitsch C (2008) HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. Proc Natl Acad Sci USA 105:2963–2968

    Article  PubMed  CAS  Google Scholar 

  • SAS II (2008) SAS/STAT® 9.2 User’s Guide. SAS Institute Inc, Cary

    Google Scholar 

  • Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biom Bull 2:110–114

    Article  CAS  Google Scholar 

  • Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374

    PubMed  CAS  Google Scholar 

  • Steane DA, Conod N, Jones RC, Vaillancourt RE, Potts BM (2006) A comparative analysis of population structure of a forest tree, Eucalyptus globutus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genet Genomes 2:30–38

    Article  Google Scholar 

  • Tremblay M, Simon JP (1989) Genetic-structure of marginal populations of white spruce (Picea glauca) at its northern limit of distribution in nouveau-Québec. Can J For Res 19:1371–1379

    Article  Google Scholar 

  • Vendramin GG, Anzidei M, Madaghiele A, Bucci G (1998) Distribution of genetic diversity in Pinus pinaster Ait. as revealed by chloroplast microsatellites. Theor Appl Genet 97:456–463

    Article  CAS  Google Scholar 

  • Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266

    Article  PubMed  CAS  Google Scholar 

  • Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S (2010) Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol 24:1211–1218

    Article  Google Scholar 

  • Waldmann P, García-Gil MR, Sillanpää MJ (2005) Comparing Bayesian estimates of genetic differentiation of molecular markers and quantitative traits: an application to Pinus sylvestris. Heredity 94:623–629

    Article  PubMed  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Ann Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Whitlock MC (2008) Evolutionary inference from QST. Mol Ecol 17:1885–1896

    Article  PubMed  Google Scholar 

  • Whitlock MC, Guillaume F (2009) Testing for spatially divergent selection: comparing QST to FST. Genetics 183:1055–1063

    Article  PubMed  Google Scholar 

  • Wilson AJ (2008) Why h2 does not always equal VA/VP? J Evol Biol 21:647–650

    Article  PubMed  CAS  Google Scholar 

  • Wortemann R (2011) Etude de la variabilité génétique et la plasticité phénotypique de la vulnérabilité à la cavitation chez Fagus sylvatica. Thesis, University of Blaise Pascal, pp 1–154

  • Yang RC, Yeh FC, Yanchuk AD (1996) A comparison of isozyme and quantitative genetic variation in Pinus contorta ssp. latifolia by FST. Genetics 142:1045–1052

    PubMed  CAS  Google Scholar 

  • Zamudio F, Baettyg R, Vergara A, Guerra F (2002) Genetic trends in wood density and radial growth with cambial age in a radiata pine progeny test. Ann For Sci 59:541–549

    Article  Google Scholar 

  • Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ, Coomes DA (2010) Angiosperm wood structure: globla patterns in vessel anatomy and their relation to wood density and potential conductivity. Am J Bot 97:207–215

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

SD and JBL received funding from INRA-EFPA (innovative project Grant) and a PhD Grant from INRA Région Auvergne, respectively. This trial was set up by the experimental unit of INRA Pierroton within the Treesnips EC-funded project (QLK3-CT-2002-01973). Cavitation resistance, wood density and leaf area were measured with fundings from the European Union (Noveltree project, FP7-21868). We thank Emmanuelle Eveno and Pauline Garnier-Géré for sharing biomass data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Delzon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamy, JB., Lagane, F., Plomion, C. et al. Micro-evolutionary patterns of juvenile wood density in a pine species. Plant Ecol 213, 1781–1792 (2012). https://doi.org/10.1007/s11258-012-0133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-012-0133-2

Keywords

Navigation