Skip to main content

Advertisement

Log in

Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native–exotic hosts

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In the past few decades, it has been widely accepted that forest loss due to human actions alter the interactions between organisms. We studied the relationship between forest fragment size and arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) colonization, and the AMF spore communities in the rhizosphere of two congeneric Euphorbia species (native and exotic/invasive). We hypothesized that these fungal variables will differ with fragment size and species status, and predicted that (a) AMF and DSE colonization together with AMF spore abundance and diversity would be positively related to forest fragment size; (b) these relationships will differ between the exotic and the native species; and (c) there will be a negative relationship between forest fragment size and the availability of soil nutrients (NH4 +, NO3 , and phosphorus). This study was performed in the eight randomly selected forest fragments (0.86–1000 ha), immersed in an agricultural matrix from the Chaquean region in central Argentina. AMF root colonization in the native and exotic species was similar, and was positively related with forest fragment size. Likewise, AMF spore diversity and spore abundance were higher in the larger fragments. While DSE root colonization in the native host was positively related with forest fragment size, DSE colonization in the exotic host showed no relationship. Soil nutrients contents were negatively related with forest fragment size. In addition, NH4 + and NO3 were negatively correlated with AMF spores abundance and root colonization and with DSE colonization in the native species. The results observed in this study show how habitat fragmentation might affect the interaction between key soil components, such as rhizospheric plant-fungal symbiosis and nutrient availability. These environmental changes may have important consequences on plant community composition and nutrient dynamics in this fragmented landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberton O et al (2010) Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant Soil 328:459–470

    Article  CAS  Google Scholar 

  • Barbosa O, Marquet PA (2002) Effects of forest fragmentation on the beetle assemblage at the relict forest of Fray Jorge, Chile. Oecologia 132:296–306

    Article  Google Scholar 

  • Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in four wing saltbrush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51:449–459

    Article  Google Scholar 

  • Benitez-Malvido J et al (1999) Leaf-fungal incidence and herbivory on tree seedlings in tropical rainforest fragments: an experimental study. Biol Conserv 91:143–150

    Article  Google Scholar 

  • Berglund H, Jonsson BG (2001) Predictability of plant and fungal species richness of old-growth boreal forest islands. J Veg Sci 12:857–866

    Article  Google Scholar 

  • Billings SA, Gaydess EA (2008) Soil nitrogen and carbon dynamics in a fragmented landscape experiencing forest succession. Landsc Ecol 23:581–593

    Article  Google Scholar 

  • Brown N et al (2006) Macrofungal diversity in fragmented and disturbed forests of the Western Ghats of India. J Appl Ecol 43:11–17

    Article  Google Scholar 

  • Brundrett M et al (1996) Working with mycorrhizal in forestry and agriculture. ACIAR Monograph 32

  • Cabrera A (1976) Regiones fitogeográficas de Argentina. ACME, Buenos Aires

    Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265

    Article  Google Scholar 

  • Collinge SK (2009) Ecology of fragmented landscapes. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Daniels BAD, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255

    Article  Google Scholar 

  • Douglas et al (2010) Variation in arthropod abundance in barley under varying sowing regimes. Agric Ecosyst Environ 135:127–131

  • Edman M et al (2004) Abundance and viability of fungal spores along a forestry gradient—responses to habitat loss and isolation? Oikos 104:35–42

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Tev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fitter AH et al (2004) Global environmental change and the biology of arbuscular mycorrhizas: gaps and challenges. Can J Bot 82:1133–1139

    Article  Google Scholar 

  • Fumanal B et al (2006) Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza 17:25–35

    Article  PubMed  CAS  Google Scholar 

  • Galetto L et al (2007) Fragmentación de hábitat, riqueza de polinizadores, polinización y reproducción de plantas nativas en el Bosque Chaqueño de Córdoba, Argentina. Ecol Austral 17:67–80

    Google Scholar 

  • Gonzalez A, Chaneton EJ (2002) Heterotroph species extinction, abundance and biomass dynamics in an experimentally fragmented microecosystem. J Anim Ecol 71:594–602

    Article  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  • Hallett SG (2006) Dislocation from coevolved relationships: a unifying theory for plant invasion and naturalization? Weed Sci 54:282–290

    CAS  Google Scholar 

  • Hawkes CV, Belnap J, D’Antonio C, Firestone. MK (2006) Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant Soil 281:369–380

    Article  CAS  Google Scholar 

  • Hayman DS (1974) Plant growth responses to vesicular-arbuscular mycorrhiza. VI. Effect of light and temperature. New Phytol 73:71–80

    Article  Google Scholar 

  • Heinemeyer A et al (2003) Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Glob Change Biol 10:52–64

    Article  Google Scholar 

  • Hibbett DS et al (2009) Fungal ecology catches fire. New Phytol 184:279–282

    Article  PubMed  Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337

    Article  Google Scholar 

  • Jauker F et al (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc Ecol 24:547–555

    Article  Google Scholar 

  • Johnson NC (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. PNAS 107:2093–2098

    Article  PubMed  CAS  Google Scholar 

  • Jones MD et al (2008) Location relative to a retention patch affects the ECM fungal community more than patch size in the first season after timber harvesting on Vancouver Island, British Columbia. For Ecol Manage 255:1342–1352

    Article  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—Are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  PubMed  CAS  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Washington, DC

    Google Scholar 

  • Luti R et al (1979) VI Vegetación. In: Vázquez JB, Miatello RA, Roqué ME (eds) Geografía física de la provincia de Córdoba. Boldt, Buenos Aires, pp 297–368

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155

    Article  PubMed  Google Scholar 

  • Mangan SA et al (2004) Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities. Oecologia 141:687–700

    Article  PubMed  Google Scholar 

  • McGonigle TP et al (1990) A method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Millar RB, Anderson MJ (2004) Remedies for pseudoreplication. Fish Res 70:397–407

    Article  Google Scholar 

  • Moglia G, Giménez AM (1998) Rasgos anatómicos característicos del hidrosistema de las principales especies arbóreas de la región chaqueña argentina. Rev de Invest Agraria Sist y Rec Forest 7:53–71

    Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  PubMed  CAS  Google Scholar 

  • Newsham KK et al (2009) Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol 2:10–20

    Article  Google Scholar 

  • Öpik M et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Peay KG et al (2007) A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 10:470–480

    Article  PubMed  Google Scholar 

  • Pielou E (1969) An introduction to mathematical ecology. Wiley Interscience, New York, p 286

    Google Scholar 

  • R Core Development Team (2010) R: a language and environment for statistical computing. http://www.R-project.org

  • Saunders DA et al (1991) Biological consequences of ecosystem fragmentation. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Smith MD, Jones SD (2004) Exploring functional definitions of mycorrhizas: Are mycorrhizas always mutualisms? Can J Bot 82:1089–1109

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York, NY

    Google Scholar 

  • Sparks DL (1996) Methods of soil analysis. Part 3. Chemical methods. ASA, SSSA, CSSA, Madison, WI

    Google Scholar 

  • Staddon PL et al (2003) Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Glob Change Biol 9:186–194

    Article  Google Scholar 

  • Subils R (1977) Las especies de Euphorbia de la República Argentina. Kurtziana 10:83–248

    Google Scholar 

  • Sykorova Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  PubMed  CAS  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Underwood AJ (1997) Experiments in ecology. Cambridge University Press, Cambridge, p 504

    Google Scholar 

  • Urcelay C, Battistella R (2007) Colonización micorrícica en distintos tipos funcionales de plantas herbáceas del centro de Argentina. Ecol Austral 17:179–188

    Google Scholar 

  • Urcelay C et al (2009) Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. J Ecol 97:1291–1301

    Article  Google Scholar 

  • Wardle DA et al (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank T. Watson for language advices, Tim Benton for suggestions on data analyses, two anonymous reviewers for comments to improve previous version of this manuscript, Estancia Santo Domingo for field facilities; the authors wish to thank also the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica, and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba for financial support. C.U. and L.G. are researchers from CONICET, and serving professors at the Universidad Nacional de Córdoba. G.G. is a CONICET fellowship holder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Grilli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 35 kb)

Supplementary material 2 (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grilli, G., Urcelay, C. & Galetto, L. Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecol 213, 155–165 (2012). https://doi.org/10.1007/s11258-011-9966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-011-9966-3

Keywords

Navigation