Skip to main content

Advertisement

Log in

Activation of general control nonderepressible 2 kinase protects human glomerular endothelial cells from harmful high-glucose-induced molecular pathways

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Considering the referred beneficial effects of protein restriction on diabetic nephropathy (DN) and the role of renal endothelium in its pathogenesis, we evaluated the effect of general control nonderepressible 2 (GCN2) kinase activation, a sensor of amino acid deprivation, on known detrimental molecular pathways in primary human glomerular endothelial cells (GEnC).

Methods

GEnC were cultured under normal or high-glucose conditions in the presence or not of the GCN2 kinase activator, tryptophanol. Glucose transporter 1 (GLUT1) expression was assessed by western blotting and reactive oxygen species (ROS) using a fluorogenic probe. Activities of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and protein kinase C (PKC) were assessed by commercial activity assays, sorbitol colorimetrically, methylglyoxal by ELISA and O-linked β-N-acetyl glucosamine (O-GlcNAc)-modified proteins by western blotting.

Results

High glucose induced GLUT1 expression, increased ROS and inhibited GAPDH. Also it increased the polyol pathway product sorbitol, PKC activity, the level of the O-GlcNAc-modified proteins that produced by the hexosamine pathway and the advanced glycation endproducts’ precursor methylglyoxal. Co-treatment of GEnC with tryptophanol restored the above high-glucose-induced alterations.

Conclusions

Activation of GCN2 kinase protects GEnC from high-glucose-induced harmful molecular pathways. By inhibiting concurrently many pathways involved in DN pathogenesis, GCN2 kinase may serve as a pharmaceutical target for the treatment of DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188. doi:10.1152/physrev.00045.2011

    Article  CAS  PubMed  Google Scholar 

  2. Sena CM, Pereira AM, Seica R (2013) Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832(12):2216–2231. doi:10.1016/j.bbadis.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  3. Burrows NR, Li Y, Geiss LS (2010) Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care 33(1):73–77. doi:10.2337/dc09-0343

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Halle JP, Young J, Rashkow A, Joyce C, Nawaz S, Yusuf S, Investigators HS (2001) Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286(4):421–426

    Article  CAS  PubMed  Google Scholar 

  5. Eleftheriadis T, Antoniadi G, Pissas G, Liakopoulos V, Stefanidis I (2013) The renal endothelium in diabetic nephropathy. Ren Fail 35(4):592–599. doi:10.3109/0886022X.2013.773836

    Article  CAS  PubMed  Google Scholar 

  6. Brosius FC, Heilig CW (2005) Glucose transporters in diabetic nephropathy. Pediatr Nephrol 20(4):447–451. doi:10.1007/s00467-004-1748-x

    Article  PubMed  Google Scholar 

  7. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    Article  CAS  PubMed  Google Scholar 

  8. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E (2014) Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 1843(9):1948–1968. doi:10.1016/j.bbamcr.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  9. Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Munzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD (2014) FGF21 is an endocrine signal of protein restriction. J Clin Investig 124(9):3913–3922. doi:10.1172/JCI74915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walker JD, Bending JJ, Dodds RA, Mattock MB, Murrells TJ, Keen H, Viberti GC (1989) Restriction of dietary protein and progression of renal failure in diabetic nephropathy. Lancet 2(8677):1411–1415

    Article  CAS  PubMed  Google Scholar 

  11. Zeller K, Whittaker E, Sullivan L, Raskin P, Jacobson HR (1991) Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med 324(2):78–84. doi:10.1056/NEJM199101103240202

    Article  CAS  PubMed  Google Scholar 

  12. Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Tsogka K, Sounidaki M, Stefanidis I (2016) Differential effects of the two amino acid sensing systems, the GCN2 kinase and the mTOR complex 1, on primary human alloreactive CD4 + T-cells. Int J Mol Med 37(5):1412–1420. doi:10.3892/ijmm.2016.2547

    PubMed  Google Scholar 

  13. Eleftheriadis T, Pissas G, Antoniadi G, Spanoulis A, Liakopoulos V, Stefanidis I (2014) Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation. Int Immunol 26(12):673–684. doi:10.1093/intimm/dxu077

    Article  CAS  PubMed  Google Scholar 

  14. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC (2003) Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23(16):5651–5663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eleftheriadis T, Pissas G, Yiannaki E, Markala D, Arampatzis S, Antoniadi G, Liakopoulos V, Stefanidis I (2013) Inhibition of indoleamine 2,3-dioxygenase in mixed lymphocyte reaction affects glucose influx and enzymes involved in aerobic glycolysis and glutaminolysis in alloreactive T-cells. Hum Immunol 74(12):1501–1509. doi:10.1016/j.humimm.2013.08.268

    Article  CAS  PubMed  Google Scholar 

  16. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Investig 112(7):1049–1057. doi:10.1172/JCI18127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779):787–790. doi:10.1038/35008121

    Article  CAS  PubMed  Google Scholar 

  18. Gabbay KH, Merola LO, Field RA (1966) Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science 151(3707):209–210

    Article  CAS  PubMed  Google Scholar 

  19. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL (1997) Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Investig 100(1):115–126. doi:10.1172/JCI119503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101(6):676–681

    Article  CAS  PubMed  Google Scholar 

  21. Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, Sugimoto T, Yasuda H, Kashiwagi A, Ways DK, King GL, Kikkawa R (2000) Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J Off Publ Fed Am Soc Exp Biol 14(3):439–447

    CAS  Google Scholar 

  22. Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED (1998) High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Investig 101(1):160–169. doi:10.1172/JCI119875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wells L, Hart GW (2003) O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar. FEBS Lett 546(1):154–158

    Article  CAS  PubMed  Google Scholar 

  24. Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97(22):12222–12226. doi:10.1073/pnas.97.22.12222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Investig 108(9):1341–1348. doi:10.1172/JCI11235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Queisser MA, Yao D, Geisler S, Hammes HP, Lochnit G, Schleicher ED, Brownlee M, Preissner KT (2010) Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes 59(3):670–678. doi:10.2337/db08-1565

    Article  CAS  PubMed  Google Scholar 

  27. Giacco F, Du X, D’Agati VD, Milne R, Sui G, Geoffrion M, Brownlee M (2014) Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes 63(1):291–299. doi:10.2337/db13-0316

    Article  CAS  PubMed  Google Scholar 

  28. Brouwers O, Niessen PM, Miyata T, Ostergaard JA, Flyvbjerg A, Peutz-Kootstra CJ, Sieber J, Mundel PH, Brownlee M, Janssen BJ, De Mey JG, Stehouwer CD, Schalkwijk CG (2014) Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia 57(1):224–235. doi:10.1007/s00125-013-3088-5

    Article  CAS  PubMed  Google Scholar 

  29. Sato S, Kawamura H, Takemoto M, Maezawa Y, Fujimoto M, Shimoyama T, Koshizaka M, Tsurutani Y, Watanabe A, Ueda S, Halevi K, Saito Y, Yokote K (2009) Halofuginone prevents extracellular matrix deposition in diabetic nephropathy. Biochem Biophys Res Commun 379(2):411–416. doi:10.1016/j.bbrc.2008.12.088

    Article  CAS  PubMed  Google Scholar 

  30. Pines M, Spector I (2015) Halofuginone—the multifaceted molecule. Molecules 20(1):573–594. doi:10.3390/molecules20010573

    Article  PubMed  Google Scholar 

  31. Passariello N, Sepe J, Marrazzo G, De Cicco A, Peluso A, Pisano MC, Sgambato S, Tesauro P, D’Onofrio F (1993) Effect of aldose reductase inhibitor (tolrestat) on urinary albumin excretion rate and glomerular filtration rate in IDDM subjects with nephropathy. Diabetes Care 16(5):789–795

    Article  CAS  PubMed  Google Scholar 

  32. Cherney DZ, Konvalinka A, Zinman B, Diamandis EP, Soosaipillai A, Reich H, Lorraine J, Lai V, Scholey JW, Miller JA (2009) Effect of protein kinase Cbeta inhibition on renal hemodynamic function and urinary biomarkers in humans with type 1 diabetes: a pilot study. Diabetes Care 32(1):91–93. doi:10.2337/dc08-1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the resources of our department and by the Research Committee of the University of Thessaly (4962.01.28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Eleftheriadis.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleftheriadis, T., Tsogka, K., Pissas, G. et al. Activation of general control nonderepressible 2 kinase protects human glomerular endothelial cells from harmful high-glucose-induced molecular pathways. Int Urol Nephrol 48, 1731–1739 (2016). https://doi.org/10.1007/s11255-016-1377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-016-1377-x

Keywords

Navigation