Skip to main content

Advertisement

Log in

Sildenafil activates antioxidant and antiapoptotic genes and inhibits proinflammatory cytokine genes in a rat model of renal ischemia/reperfusion injury

  • Nephrology - Original article
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objectives

To study the possible renoprotective effect of sildenafil against renal ischemia/reperfusion (I/R) injury and its effect on the expression of some antioxidant, antiapoptotic gene and proinflammatory cytokine genes in rat model of renal I/R injury.

Materials and methods

One hundred and twenty male Sprague Dawley rats were subdivided into three equal groups: sham (underwent right nephrectomy without ischemia), control (underwent right nephrectomy and left ischemia for 45 min) and study [as control with 1 mg/kg sildenafil (per oral) 60 min before anesthesia]. Serum creatinine and BUN were measured at the baseline and the study endpoints (2, 24, 48 h and 7 days), and the left kidney was harvested at study endpoints for histopathological examination as well as for assessment of the expression of antioxidant genes (Nrf-2, HO-1 and NQO-1), antiapoptotic gene (Bcl-2) and inflammatory cytokines, e.g., TNF-a, IL-1β and ICAM-1.

Results

I/R caused significant increase in serum creatinine, BUN, histopathological damage score (p < 0.001) and significant reduction in antioxidant genes (nrf2, HO-1 and NQO-1) and antiapoptotic gene (Bcl2) with significant increase in TNF-a, IL-1β and ICAM-1 genes in kidney tissues. Pretreatment with sildenafil caused significant attenuation of serum creatinine and BUN as well as significant increase in the expression of antioxidant genes and Bcl-2 genes with significant reduction in the expression of proinflammatory cytokine genes (p value < 0.001).

Conclusion

The renoprotective effect of sildenafil against renal I/R might be due to the activation of antioxidant genes (Nrf2, HO-1 and NQO-1) and antiapoptotic gene (Bcl2) and attenuation of proinflammatory cytokines (TNF-a, IL-1β and ICAM-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hussein AA, Shokeir AA, Sarhan ME et al (2011) Effects of combined erythropoietin and epidermal growth factor on renal ischaemia/reperfusion injury: a randomized experimental controlled study. BJU Int 107(2):323–328

    Article  CAS  Google Scholar 

  2. Grinyo JM (2001) Role of ischemia-reperfusion injury in the development of chronic renal allograft damage. Transplant Proc 33:3741–3742

    Article  CAS  PubMed  Google Scholar 

  3. Shokeir AA, Hussein AM, Awadalla A et al (2012) Protection against renal ischaemia/reperfusion injury: a comparative experimental study of the effect of ischaemic preconditioning vs. postconditioning. Arab J Urol 10(4):41824

    Article  Google Scholar 

  4. Shokeir AA, Hussein AM, Barakat N et al (2014) Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf-2-dependent genes by ischaemic preconditioning and post-conditioning: new adaptive endogenous protective responses against renal ischaemia/reperfusion injury. Acta Physiol 210(2):342–353

    Article  CAS  Google Scholar 

  5. Arany I (2008) Dual role of the activated epidermal growth factor receptor in renal tubular cells during stress. Kidney Int 72:5–7

    Article  Google Scholar 

  6. Sheridan AM, Bonventre JV (2001) Pathophysiology of acute renal failure. Contrib Nephrol 132:7–21

    Article  CAS  PubMed  Google Scholar 

  7. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    Article  CAS  PubMed  Google Scholar 

  8. Beckman JK, Yoshioka T, Knobel SM, Greene HL (1991) Biphasic changes in phospholipid hydroperoxide levels during renal ischemia/reperfusion. Free Radic Biol Med 11:335–340

    Article  CAS  PubMed  Google Scholar 

  9. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100:30–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  11. Choi DE, Jeong JY, Lim BJ et al (2009) Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in rats. Am J Physiol Renal Physiol 297(2):F36270

    Article  Google Scholar 

  12. Medeiros PJ, Villarim Neto A, Lima FP et al (2010) Effect of sildenafil in renal ischemia/reperfusion injury in rats. Acta Cir Bras 25(6):490–495

    Article  PubMed  Google Scholar 

  13. Whitaker RM, Wills LP, Stallons LJ, Schnellmann RG (2013) cGMP selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J Pharmacol Exp Ther 347(3):626–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Oruc O, Inci K, Aki FT, Zeybek D, Muftuoglu SF, Kilinc K, Ergen A (2010) Sildenafil attenuates renal ischemia reperfusion injury by decreasing leukocyte infiltration. Acta Histochem 112(4):337–344

    Article  CAS  PubMed  Google Scholar 

  15. Lledó-García E, Subirá-Ríos D, Rodríguez-Martínez D et al (2009) Sildenafil as a protecting drug for warm ischemic kidney transplants: experimental results. J Urol 182(3):1222–1225

    Article  PubMed  Google Scholar 

  16. Tousoulis D, KampoliAM Tentolouris C, Papageorgiou N, Stefanadis C (2012) The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 10(1):4–18

    Article  CAS  PubMed  Google Scholar 

  17. Molitoris BA, Sutton TA (2004) Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int 66(2):496–499

    Article  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(–DDC (t)). Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  19. Shah KG, Rajan D, Jacob A et al (2010) Attenuation of renal ischemia and reperfusion injury by human adrenomedullin and its binding protein. J Surg Res 163(1):110–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17:1503–1520

    Article  CAS  PubMed  Google Scholar 

  21. Salloum F, Yin C, Xi L, Kukreja RC (2003) Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 92:595–597

    Article  CAS  PubMed  Google Scholar 

  22. Barakat N, Hussein AAM, Abdel-Maboud M et al (2010) Ischaemia-reperfusion injury in renal transplantation: the role of nitric oxide in an experimental rat model. BJU Int 106:1230–1236

    Article  CAS  PubMed  Google Scholar 

  23. Raposo C, Nunes AK, Luna RL, et al., (2013) Sildenafil (Viagra) protective effects on neuroinflammation: the role of iNOS/NO system in an inflammatory demyelination model. Mediators Inflamm 321460. doi:10.1155/2013/321460

  24. Bogdan S, Seferian A, Totoescu A et al (2012) Sildenafil reduces inflammation and prevents pulmonary arterial remodeling of the monocrotaline -induced disease in the Wistar Rats. Maedica (Buchar) 7(2):109–116

    Google Scholar 

  25. Gilchrist M, Hesslinger C, Befus AD (2003) Tetrahydrobiopterin, a critical factor in the production and role of nitric oxide in mast cells. J Biol Chem 278:50607–50614

    Article  CAS  PubMed  Google Scholar 

  26. Friedewald JJ, Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66(2):486–491

    Article  PubMed  Google Scholar 

  27. Ahluwalia A, Foster P, Scotland RS et al (2004) Anti-inflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc Natl Acad Sci USA 101(5):1386–1391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zuniga-Toala A, Zatarain-Barron ZL, Hernandez-Pando R et al (2013) Nordihydroguaiaretic acid induces Nrf2 nuclear translocation in vivo and attenuates renal damage and apoptosis in the ischemia and reperfusion model. Phytomedicine 20(10):775–779

    Article  CAS  PubMed  Google Scholar 

  29. Gang GT, Hwang JH, Kim YH et al (2014) Protection of NAD (P) H: quinine oxidoreductase 1 against renal ischemia/reperfusion injury in mice. Free Radic Biol Med 67:139–149

    Article  CAS  PubMed  Google Scholar 

  30. Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM (2001) Breakthrough and views: nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 282:1075–1079

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by project # CEP1-031-MANS by ministry of higher education, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz M. Hussein.

Ethics declarations

Conflict interest

Authors declare that there is no any conflict of interest.

Additional information

Handling editor: Dr. Peter R. Merten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahran, M.H., Hussein, A.M., Barakat, N. et al. Sildenafil activates antioxidant and antiapoptotic genes and inhibits proinflammatory cytokine genes in a rat model of renal ischemia/reperfusion injury. Int Urol Nephrol 47, 1907–1915 (2015). https://doi.org/10.1007/s11255-015-1099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-015-1099-5

Keywords

Navigation