Skip to main content
Log in

Homogenized Model of Diffusion in Porous Media with Nonlinear Absorption on the Boundary

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a boundary-value problem used to describe the process of stationary diffusion in a porous medium with nonlinear absorption on the boundary. We study the asymptotic behavior of the solution when the medium becomes more and more porous and denser located in a bounded domain Ω. A homogenized equation for the description of the main term of the asymptotic expansion is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Berlyand and M. V. Goncharenko, “Homogenization of the diffusion equation in a medium with weak absorption,” Teor. Funkts. Funkts. Anal. Prilozhen., 52, 113–122 (1989).

    MathSciNet  MATH  Google Scholar 

  2. C. Conca, J. Diaz, and C. Timofte, “Effective chemical processes in porous media,” Math. Models. Methods Appl. Sci., 13, No. 10, 1437–1462 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Conca, J. Diaz, A. Linan, and C. Timofte, “Homogenization in chemical reactive floes,” Electron. J. Different. Equat., No. 40, 1–22 (2004).

  4. C. Conca, J. Diaz, A. Linan, and C. Timofte, “Homogenization results for chemical reactive flows through porous media,” New Trends Contin. Mech., 6, 99–107 (2005).

    MathSciNet  MATH  Google Scholar 

  5. D. Cioranescu, P. Donato, and R. Zaki, “Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions,” Asymptot. Anal., 53, 209–235 (2007).

    MathSciNet  MATH  Google Scholar 

  6. C. Timofte, “Homogenization in nonlinear chemical reactive flows,” in: Proc. of the 9 th WSEAS Internat. Conf. on Applied Mathematics (Istanbul, Turkey, May 27–29, 2006), pp. 250–255.

  7. T. A. Mel’nyk and O. A. Sivak, “Asymptotic analysis of a boundary-value problem with nonlinear multiphase boundary interactions in a perforated domain,” Ukr. Mat. Zh., 61, No. 4, 494–512 (2009); English translation: Ukr. Math. J., 61, No. 4, 592–612 (2009).

  8. T. A. Mel’nyk and O. A. Sivak, “Asymptotic expansion for the solution of an elliptic problem with boundary multiphase interactions of the Dirichlet and Neumann types in a perforated domain,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauk., 3, 63–67 (2010).

    MATH  Google Scholar 

  9. T. A. Mel’nyk and O. A. Sivak, “Asymptotic approximations for solutions to quasilinear and linear parabolic problems with different perturbed boundary conditions in perforated domains,” J. Math. Sci., 177, No. 1, 50–70 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. A. Mel’nyk and O. A. Sivak, “Asymptotic approximations for solutions to quasilinear and linear elliptic problems with different perturbed boundary conditions in perforated domains,” Asymptot. Anal., 75, 79–92 (2011).

    MathSciNet  MATH  Google Scholar 

  11. V. A. Marchenko and E. Ya. Khruslov, Averaged Models of Microinhomogeneous Media [in Russian], Naukova Dumka, Kiev (2005).

    Google Scholar 

  12. V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, and K.-T. Ngoan, “Averaging and G-convergence of differential operators,” Usp. Mat. Nauk, 34, Issue 5, 65–133 (1979).

    MathSciNet  MATH  Google Scholar 

  13. G. Dal Maso, An introduction to Γ-Convergence, Birkhäuser, Boston (1993).

  14. A. Braides, Γ-Convergence for Beginners, Oxford Univ. Press, Oxford (2002).

  15. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer, New York (1980).

    MATH  Google Scholar 

  16. N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Systems. Mathematical Problems of Mechanics of Composite Materials [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  17. L. Tartar, “Compensated compactness and applications to partial differential equations in non-linear analysis and mechanics,” in: R. S. Knops (editor), Heriot-Watt Symposium, Vol. IV, Pitman, London (1979).

    Google Scholar 

  18. G. Nguetseng, “Asymptotic analysis for a stiff variational problem arising in mechanics,” SIAM J. Math. Anal., 21, No. 6, 1394–1414 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Cioranescu, A. Damlamian, and G. Griso, “The periodic unfolding method in homogenization,” SIAM J. Math. Anal., 40, No. 4, 1585–1620 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Cabarrubias and P. Donato, “Existence and uniqueness for a quasilinear elliptic problem with nonlinear robin condition,” Carpath. J. Math., 27, No. 2, 173–184 (2011).

    MathSciNet  MATH  Google Scholar 

  21. E. Ya. Khruslov, “Asymptotic behavior of solutions of the second boundary-value problem in the case of refinement of the boundary of domain,” Mat. Sb., 106(148), No. 4(8), 604–621 (1978).

  22. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type [in Russian], Nauka, Moscow (1973).

    MATH  Google Scholar 

  23. V. G. Maz’ya, Sobolev Spaces [in Russian], Leningrad University, Leningrad (1985).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 9, pp. 1201–1216, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharenko, M.V., Khil’kova, L.A. Homogenized Model of Diffusion in Porous Media with Nonlinear Absorption on the Boundary. Ukr Math J 67, 1349–1366 (2016). https://doi.org/10.1007/s11253-016-1158-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-016-1158-9

Keywords

Navigation