Skip to main content
Log in

Integrability Analysis of a Two-Component Burgers-Type Hierarchy

Ukrainian Mathematical Journal Aims and scope

The Lax integrability of a two-component polynomial Burgers-type dynamical system is analyzed by using a differential-algebraic approach. Its linear adjoint matrix Lax representation is constructed. A related recursive operator and an infinite hierarchy of nonlinear Lax integrable dynamical systems of the Burgers–Korteweg–de-Vries type are obtained by the gradient-holonomic technique. The corresponding Lax representations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. D. Blackmore, A. K. Prykarpatsky, and V. H. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics,World Scientific, New York (2011).

    Book  MATH  Google Scholar 

  2. D. Blackmore, Yu. A. Prykarpatsky, N. Bogolubov (Jr.), and A. Prykarpatsky, “Integrability of and differential-algebraic structures for spatially 1D hydrodynamical systems of Riemann type,” Chaos, Solitons and Fractals, 59, 59–81 (2014).

  3. M. Błaszak, Bi-Hamiltonian Dynamical Systems, Springer, New York (1998).

    Book  Google Scholar 

  4. N. N. Bogolubov (Jr.) and A. K. Prykarpatsky, “Complete integrability of the nonlinear Ito and Benney–Kaup systems: gradient algorithm and Lax representation,” Theor. Math. Phys., 67, No. 3, 586–596 (1986).

  5. T. Chen, L.-L. Zhu, and L. Zhang , “The generalized Broer–Kaup–Kupershmidt system and its Hamiltonian extension,” Appl. Math. Sci., 5, No. 76, 3767–3780 (2011).

    MATH  MathSciNet  Google Scholar 

  6. E. A. Coddington and N. Levinson, Theory of Differential Equations, McGraw-Hill, New York (1955).

    MATH  Google Scholar 

  7. L. D. Faddeev and L. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, New York; Berlin (2000).

    Google Scholar 

  8. M. V. Foursov, “On integrable coupled Burgers-type equation,” Phys. Lett. A, 272, 57–64 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. J. Fritz and B. Troth, “Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas,” Comm. Math. Phys., 249, Issue 1, 1–27 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  10. I. M. Gelfand and L. A. Dickey, “Integrable nonlinear equations and Liouville theorem,” Funct. Anal. Appl., 13, 8–20 (1979).

    Google Scholar 

  11. I. M. Gelfand and L. A. Dickey, “The calculus of jets and nonlinear Hamiltonian systems,” Funct. Anal. Appl., 12, Issue 2, 81–94 (1978).

    Article  Google Scholar 

  12. I. M. Gelfand and L. A. Dickey, “A Lie algebra structure in a formal variational calculation,” Funct. Anal. Appl., 10, Issue 1, 16–22 (1976).

    Article  Google Scholar 

  13. I. M. Gelfand and L. A. Dickey, “The resolvent and Hamiltonian systems,” Funct. Anal. Appl., 11, Issue 2, 93–105 (1977).

    Article  Google Scholar 

  14. I. M. Gelfand, Yu. I. Manin, and M. A. Shubin, “Poisson brackets and the kernel of the variational derivative in the formal calculus of variations,” Funct. Anal. Appl., 10, Issue 4, 274–278 (1976).

    Article  Google Scholar 

  15. C. Godbillon, Geometri Differentielle et Mecanique Analytique, Hermann, Paris (1969).

    Google Scholar 

  16. N. H. Ibragimov and A. B. Shabat, “Infinite Lie–Backlund algebras,” Funct. Anal. Appl., 14, 313–315 (1980).

    Article  Google Scholar 

  17. I. Kaplanski, Introduction to Differential Algebra, New York (1957).

  18. B. A. Kupershmidt, “Dark equations,” J. Nonlin. Math. Phys., 8, No. 3, 363–445 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  19. B. A. Kupershmidt, “Mathematics of dispersive water waves,” Comm. Math. Phys., 99, 51–73 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  20. P. D. Lax, “Almost periodic solutions of the KdV equation,” Source: SIAM Rev., 18, No. 3, 351–375 (1976).

    MATH  MathSciNet  Google Scholar 

  21. J. L. Lions, Quelgues Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris (1969).

    Google Scholar 

  22. W. X. Ma, “A hierarchy of coupled Burgers systems possessing a hereditary structure,” J. Phys. A: Math. Gen., 26, L1169–L1174 (1993).

    Article  Google Scholar 

  23. A.V. Mikhailov, A. B. Shabat, and R. I. Yamilov, “The symmetry approach to the classification of nonlinear equations. Complete list of integrable systems,” Russ. Math. Surv., 42, No. 4, 1–63 (1987).

    Article  MathSciNet  Google Scholar 

  24. A.V. Mikhailov, A. B. Shabat, and R. I. Yamilov, “Extension of the moduli of invertible transformations. Classification of integrable systems,” Comm. Math. Phys., 115, 1–19 (1988).

    Article  MathSciNet  Google Scholar 

  25. Theory of Solitons: the Inverse Scattering Method, S. P. Novikov (editor), Springer (1984).

  26. P. Olver, Applications of Lie Groups to Differential Equations, 2nd edn., Springer, New York (1993).

    Book  MATH  Google Scholar 

  27. A. K. Prykarpatsky, O. D. Artemovych, Z. Popowicz, and M. V. Pavlov, “Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg–de Vries hydrodynamical equations,” J. Phys. A: Math. Theor., 43, 295–205 (2010).

    Article  MathSciNet  Google Scholar 

  28. Yu. A. Prykarpatsky, O. D. Artemovych, M. Pavlov, and A. K. Prykarpatsky, “The differential-algebraic and bi-Hamiltonian integrability analysis of the Riemann type hierarchy revisited,” J. Math. Phys., 53 (2012); doi 10.1063/1.4761821.

  29. Yu. A. Prykarpatsky, O. D. Artemovych, M. Pavlov, and A. K. Prykarpatsky, “The differential-algebraic integrability analysis of symplectic and Lax type structures related with the hydrodynamic Riemann type systems,” Repts Math. Phys., 71, No. 3, 305–351 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  30. Yu. A. Prykarpatsky, “Finite dimensional local and nonlocal reductions of one type of hydrodynamic systems,” Repts Math. Phys., 50, No. 3, 349–360 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Prykarpatsky and I. Mykytyuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, Kluwer, Dordrecht, the Netherlands (1998).

    Book  MATH  Google Scholar 

  32. J. F. Ritt, “Differential algebra,” AMS-Colloq. Publ., Dover Publ., New York (1966), 33.

  33. M. Shubin, Lectures on Mathematical Physics, Moscow State University, Moscow (2001).

    Google Scholar 

  34. V. V. Sokolov and T. Wolf, “Classification of integrable polynomial vector evolution equations,” J. Phys. A: Math. Gen., 34, 11139–11148 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Prykarpatsky, K. Soltanov, and E. Özçağ, “Differential-algebraic approach to constructing representations of commuting differentiations in functional spaces and its application to nonlinear integrable dynamical systems,” Comm. Nonlinear Sci., Numer. Simulat., 19, 1644–1649 (2014).

    Article  Google Scholar 

  36. H. Tasso, “Hamiltonian formulation of odd Burgers hierarchy,” J. Phys. A: Math. Gen., 29, 7779–7784 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  37. T. Tsuchida and T. Wolf, “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I,” J. Phys. A: Math. Gen., 38, 7691–7733 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  38. G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).

    MATH  Google Scholar 

  39. G. Wilson, “On the quasi-Hamiltonian formalism of the KdV equation,” Phys. Lett., 132, No. 8/9, 445–450 (1988).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 67, No. 2, pp. 147–162, February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blackmore, D., Prykarpatsky, A.K., Özçağ, E. et al. Integrability Analysis of a Two-Component Burgers-Type Hierarchy. Ukr Math J 67, 167–185 (2015). https://doi.org/10.1007/s11253-015-1072-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-015-1072-6

Keywords

Navigation