Skip to main content
Log in

Approximation of solutions of stochastic differential equations with fractional Brownian motion by solutions of random ordinary differential equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

We prove a general theorem on the convergence of solutions of stochastic differential equations. As a corollary, we obtain a result concerning the convergence of solutions of stochastic differential equations with absolutely continuous processes to a solution of an equation with Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zähle, “Integration with respect to fractal functions and stochastic calculus. I,” Probab. Theory Relat. Fields, 111, No. 3, 333–372 (1998).

    Article  MATH  Google Scholar 

  2. L. Coutin and Z. Qian, “Stochastic analysis, rough path analysis and fractional Brownian motions,” Probab. Theory Relat. Fields, 122, No. 1, 108–140 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Nualart and A. Răscanu, “Differential equations driven by fractional Brownian motion,” Collect. Math., 53, No. 1, 55–81 (2002).

    MATH  MathSciNet  Google Scholar 

  4. A. A. Ruzmaikina, “Stieltjes integrals of Hölder continuous functions with applications to fractional Brownian motion,” J. Statist. Phys., No. 5–6, 1049–1069 (2000).

  5. L. Coutin and Z. Qian, “Stochastic differential equations for fractional Brownian motions,” C. R. Acad. Sci., Sér. I. Math., 331, No. 1, 75–80 (2000).

    MATH  MathSciNet  Google Scholar 

  6. I. Nourdin, “A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one,” in: Sémin. Probab. XLI, Some Papers and Selected Contributions of the Seminars in Nancy 2005 and Luminy 2006 (Lecture Notes in Mathematics, 1934), Springer, Berlin (2008), pp. 181–197.

  7. S. J. Lin, “Stochastic analysis of fractional Brownian motions,” Stochast. Rep., 55, No. 1–2, 121–140 (1995).

    MATH  Google Scholar 

  8. T. E. Duncan, Y. Hu, and B. Pasik-Duncan, “Stochastic calculus for fractional Brownian motion. I. Theory,” SIAM J. Control Optim., 38, No. 2, 582–612 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Alòs, O. Mazet, and D. Nualart, “Stochastic calculus with respect to Gaussian processes,” Ann. Probab., 29, No. 2, 766–801 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Russo and P. Vallois, “Forward, backward and symmetric stochastic integration,” Probab. Theory Relat. Fields, 97, No. 3, 403–421 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  11. J. A. León and C. Tudor, “Semilinear fractional stochastic differential equations,” Bol. Soc. Mat. Mex., III, 8, No. 2, 205–226 (2002).

    MATH  Google Scholar 

  12. Yu. S. Mishura, “Quasilinear stochastic differential equations with fractional Brownian component,” Teor. Imovir. Mat. Stat., No. 68, 95–106 (2004).

  13. S. Tindel, C. A. Tudor, and F. Viens, “Stochastic evolution equations with fractional Brownian motion,” Probab. Theory Relat. Fields, 127, No. 2, 186–204 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  14. Yu. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin (2008).

    Book  MATH  Google Scholar 

  15. Yu. Mishura and G. Shevchenko, “The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion,” Stochastics, 80, No. 5, 489–511 (2008).

    MATH  MathSciNet  Google Scholar 

  16. I. Nordin and A. Neuenkirch, “Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion,” J. Theor. Probab., 20, No. 4, 871–899 (2007).

    Article  Google Scholar 

  17. T. H. Thao, “An approximate approach to fractional analysis for finance,” Nonlin. Anal., Real World Appl., 7, No. 1, 124–132 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Androshchuk, “Approximation of a stochastic integral over fractional Brownian motion by integrals over absolutely continuous processes,” Teor. Imovir. Mat. Stat., No. 73, 11–20 (2005).

    Google Scholar 

  19. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).

    Google Scholar 

  20. I. Norros, E. Valkeila, and J. Virtamo, “An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions,” Bernoulli, 5, No. 4, 571–587 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. M. Garsia and E. Rodemich, “Monotonicity of certain functionals under rearrangement,” Ann. Inst. Fourier, 24, No. 2, 67–116 (1974).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 62, No. 9, pp. 1256–1268, September, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ral’chenko, K.V., Shevchenko, H.M. Approximation of solutions of stochastic differential equations with fractional Brownian motion by solutions of random ordinary differential equations. Ukr Math J 62, 1460–1475 (2011). https://doi.org/10.1007/s11253-011-0442-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-011-0442-y

Keywords

Navigation