Skip to main content
Log in

Basic properties and applications of graded fractal bundles related to Clifford structures: An introduction

  • Published:
Ukrainian Mathematical Journal Aims and scope

Using the central extension of the Cuntz C*-algebra, we study the periodicity for corresponding fractals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. A. Bethe, “Statistical theory of superlattices,” Proc. Roy. Soc. London A, 150, 552–575 (1933).

    Google Scholar 

  2. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, Cambridge (1966).

    MATH  Google Scholar 

  3. K. Noshiro, Cluster Sets, Springer, Berlin (1960).

    MATH  Google Scholar 

  4. J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge (2001).

    MATH  Google Scholar 

  5. G. Peano, Formulario Matematico, Bocca, Torino (1908); Reprinted in: G. Peano, Selected Works, Toronto University Press, Toronto (1973).

    Google Scholar 

  6. R. Kikuchi, “A theory of cooperative phenomena,” Phys. Rev., 81, 988–1003 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Sukiennicki, L. Wojtczak, I. Zasada, and F. L. Castillo Alvarado, “Ferromagnetic thin films of binary alloys,” J. Magn. Magn. Mater., 288, 137–145 (2005).

    Article  Google Scholar 

  8. F. L. Castillo Alvarado, G. Contreras Puente, J. Ławrynowicz, J. H. Rutkowski, and L. Wojtczak, “The Clifford-algebraic structure for the surface melting phenomena,” Acta Phys. Superfic., 9, 109–128 (2006).

    Google Scholar 

  9. A. Fischer, Z. Feng, E. Bykov, G. Contreras Puente, A. Compaan, F. L. Castillo Alvarado, J. Avendaño López, and A. Mason, “Optical phonons in laser-deposited CdSxTe1−x films,” Appl. Phys. Lett., 70, 3239–3241 (1997).

    Article  Google Scholar 

  10. W. Pauli, “Zur Quantenmechanik des magnetischen Elektrons,” Z. Phys., 42, 601–623 (1927).

    Google Scholar 

  11. W. Pauli, “Contributions mathématiques à la théorie des matrices de Dirac,” Ann. Inst. H. Poincaré, 6, 109–136 (1936).

    MATH  MathSciNet  Google Scholar 

  12. J. Ławrynowicz and O. Suzuki, “An introduction to pseudotwistors: Basic constructions,” in: S. Marchiafava, P. Piccinni, and M. Pontecorvo (editors), Quaternionic Structures in Mathematics and Physics, World Scientific, Singapore (2001), pp. 241–252.

    Google Scholar 

  13. J. Ławrynowicz and O. Suzuki, “Periodicity theorems for graded fractal bundles related to Clifford structures,” Int. J. Pure Appl. Math., 24, 181–209 (2005).

    MATH  MathSciNet  Google Scholar 

  14. J. Cuntz, “Simple C*-algebras generated by isometries,” Commun. Math. Phys., 57, 173–185 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Kakutani, “On equivalence of infinite product measures,” Ann. Math., 49, 214–224 (1948).

    Article  MathSciNet  Google Scholar 

  16. J. Ławrynowicz, S. Marchiafava, and M. Nowak-Kepczyk, “Periodicity theorem for structure fractals in quaternionic formulation,” Int. J. Geom. Meth. Modern Phys., 3, 1167–1197 (2006).

    Article  MATH  Google Scholar 

  17. J. Ławrynowicz, S. Marchiafava, and M. Nowak-Kepczyk, “Quaternionic background of the periodicity of petal and sepal structures in some fractals of the flower type,” in: H. Begehr and F. Nicolosi (editors), More Progresses in Analysis: Proceedings of the 5th International ISAAC Congress, World Scientific, Singapore (2008).

    Google Scholar 

  18. P. Lounesto, Clifford Algebras and Spinors, Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  19. P. Jordan, J. von Neumann, and E. Wigner, “On an algebraic generalization of the quantum mechanical formalism,” Ann. Math., 35, 29–64 (1934).

    Article  Google Scholar 

  20. J. Ławrynowicz, M. Nowak-Kepczyk, and O. Suzuki, A Duality Theorem for Inoculated Graded Fractal Bundles Vs. Cuntz Algebras and Their Central Extensions (to appear).

  21. J. Ławrynowicz, M. Nowak-Kepczyk, and L. M. Tovar Sánchez, “Type-changing transformations of Hurwitz pairs, quasiregular functions, and hyperkählerian holomorphic chains II,” in: S. Dimiev and K. Sekigawa (editors), Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics, World Scientific, New Jersey (2005), pp. 158–173.

    Google Scholar 

  22. F. L. Castillo Alvarado, J. Ławrynowicz, and O. Suzuki, “Duality for fractal sets and lattice models on fractal sets,” Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform., 41, 49–68 (2003).

    Google Scholar 

  23. J. Ławrynowicz, K. Nôno, and O. Suzuki, “A duality theorem for fractals sets and Cuntz algebras and their central extensions,” Publ. Res. Inst. Math. Sci. (Kyoto), 1333, No. 7, 99–108 (2003).

    Google Scholar 

  24. J. Ławrynowicz and O. Suzuki, “An introduction to pseudotwistors: Spinor solutions vs. harmonic forms and cohomology groups,” Progr. Phys., 18, 393–423 (2000).

    Google Scholar 

  25. J. Ławrynowicz and O. Suzuki, “Pseudotwistors,” Int. J. Theor. Phys., 40, 387–397 (2001).

    Article  MATH  Google Scholar 

  26. J. Ławrynowicz and L. M. Tovar Sánchez, “Type-changing transformations of Hurwitz pairs, quasiregular functions, and hyperkählerian holomorphic chains I,” in: S. Dimiev and K. Sekigawa (editors), Perspectives of Complex Analysis, Differential Geometry and Mathematical Physics, World Scientigic, Singapore (2001), pp. 58–74.

    Google Scholar 

  27. R. Penrose, “The twistor programme,” Rep. Math. Phys., 12, 65–76 (1977).

    Article  MathSciNet  Google Scholar 

  28. J. Ławrynowicz and O. Suzuki, “The twistor theory of the Hermitian Hurwitz pair (ℂ4(I 2,2), ℂ5(I 2,3)),” Adv. Appl. Clifford Algebras, 8, No. 1, 147–179 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  29. J. Ławrynowicz and J. Rembieliński, “Pseudo-Euclidean Hurwitz pairs and the Kałuża-Klein theories,” Preprint No. 86-8, Institute of Physics, University of Łódź, Łódź (1986); J. Phys. A: Math. Gen., 20, 5831–5848 (1987).

    Google Scholar 

  30. J. Ławrynowicz and J. Rembieliński, “On the composition of nondegenerate quadratic forms with an arbitrary index,” Preprint No. 369, Institute of Mathematics, Polish Academy of Sciences (1986); Ann. Fac. Sci. Toulouse Math., 10, No. 5, 141–168 (1985).

  31. J. Ławrynowicz and O. Suzuki, “An approach to the 5-, 9-, and 13-dimensional complex dynamics I. Dynamical aspects,” Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform., 26, 7–39 (1998).

    Google Scholar 

  32. J. Ławrynowicz and O. Suzuki, “An approach to the 5-, 9-, and 13-dimensional complex dynamics II. Twistor aspects,” Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform., 26, 23–48 (1998).

    Google Scholar 

  33. J. Ławrynowicz, P. Lounesto, and O. Suzuki, “An approach to the 5-, 9-, and 13-dimensional complex dynamics III. Triality aspects,” Bull. Soc. Sci. Lett. Łódź, Sér. Rech. Déform., 34, 91–119 (2001).

    Google Scholar 

  34. F. L. Castillo Alvarado, G. Contreras Puente, J. Ławrynowicz, J. H. Rutkowski, and L. Wojtczak, “A physical background of geometrical model for the surface energy contribution,” Acta Phys. Superfic., 9, 129–148 (2006).

    Google Scholar 

  35. F. L. Castillo Alvarado, G. Contreras Puente, J. Ławrynowicz, and L. Wojtczak, “A Hurwitz pair approach to the pre-melting problem,” in: J. Ławrynowicz (editor), Deformations of Mathematical Structures II. Hurwitz-Type Structures and Applications to Surface Physics, Kluwer, Dordrecht (1994), pp. 289–298.

    Google Scholar 

  36. F. L. Castillo Alvarado, G. Contreras Puente, J. Ławrynowicz, L. Wojtczak, and J. H. Rutkowski, “A geometrical model of the pre-melting properties,” in: I. Hernández Calderón and R. Asomoza (editors), Surfaces, Vacuum and Their Applications, AIP Press, Woodbury, NY (1996), pp. 34–43.

    Google Scholar 

  37. J. Ławrynowicz, L. Wojtczak, S. Koshi, and O. Suzuki, “Stochastic mechanics of particle systems in Clifford-analytical formulation related to Hurwitz pairs of bidimension (8, 5),” in: J. Ławrynowicz (editor), Deformations of Mathematical Structures II. Hurwitz-Type Structures and Applications to Surface Physics, Kluwer, Dordrecht (1994), pp. 213–262.

    Google Scholar 

  38. G. Ruppeiner, “Riemannian geometric theory of critical phenomena,” Phys. Rev. A, 44, 3583–3595 (1991).

    Article  Google Scholar 

  39. A. Trautman, “Fibre bundles associated with space-time,” Rep. Math. Phys., 1, 29–62 (1970).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ławrynowicz.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 5, pp. 603–618, May, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ławrynowicz, J., Suzuki, O. & Castillo Alvarado, F.L. Basic properties and applications of graded fractal bundles related to Clifford structures: An introduction. Ukr Math J 60, 692–707 (2008). https://doi.org/10.1007/s11253-008-0082-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-008-0082-z

Keywords

Navigation