Skip to main content
Log in

An infinite-dimensional Borsuk-Ulam-type generalization of the Leray-Schauder fixed-point theorem and some applications

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

A generalization of the classical Leray-Schauder fixed-point theorem based on the infinite-dimensional Borsuk-Ulam-type antipode construction is proposed. A new nonstandard proof of the classical Leray-Schauder fixed-point theorem and a study of the solution manifold of a nonlinear Hamilton-Jacobi-type equation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Springer, Berlin-Heidelberg (1986).

    MATH  Google Scholar 

  2. N. K. Prykarpatska and E. Wachnicki, The Cartan-Monge Geometric Approach to the Characteristics Method and Application to the Hamilton-Jacobi Type Equations, Preprint ICTP, Trieste (2007).

    Google Scholar 

  3. A. M. Samoilenko, Elements of Mathematical Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  4. J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Dover (2006).

  5. J. Dugundji and A. Granas, Fixed-Point Theory, PWN, Warszawa (1981).

    Google Scholar 

  6. L. Górniewicz, Topological Fixed-Point Theory of Multivalued Mappings, Kluwer, Dordrecht (1999).

    MATH  Google Scholar 

  7. K. Goebel, W. A. Kirk, et al., Topics in Metric Fixed-Point Theory, Cambridge University Press, Cambridge (1990).

    MATH  Google Scholar 

  8. A. N. Kolmogorov and S. V. Fomin, Introduction to Functional Analysis [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  9. L. Nirenberg, Topics in Nonlinear Functional Analysis, AMS, Providence, RI (2001).

    MATH  Google Scholar 

  10. A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  11. B. D. Gelman, “An infinite-dimensional version of the Borsuk-Ulam theorem,” Funkts. Anal. Prilozhen., 38, No. 4, 1–5 (2004).

    MathSciNet  Google Scholar 

  12. W. Rudin, Functional Analysis, McGraw-Hill, New York (1991).

    MATH  Google Scholar 

  13. J. Andres and L. Górniewicz, Topological Fixed-Point Principles for Boundary-Value Problems, Kluwer, Dordrecht (2003).

    MATH  Google Scholar 

  14. F. Browder, “On a generalization of the Schauder fixed-point theorem,” Duke Math. J., 26, 291–303 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  15. B. D. Gelman, “Borsuk-Ulam theorem in infinite-dimensional Banach spaces,” Mat. Sb., 103, No. 1, 83–92 (2002).

    MathSciNet  Google Scholar 

  16. A. K. Prykarpatsky, A Borsuk-Ulam Type Generalization of the Leray-Schauder Fixed-Point Theorem, Preprint ICTP, Trieste (2007).

    Google Scholar 

  17. A. K. Prykarpatsky, Int. Conf. “Top. Theory of Fixed and Periodic Points” (July 22–28, 2007), Held Math. Res. and Conf. Center Bedlewo near Poznan, Poland.

  18. A. K. Prykarpatsky, Int. Conf. “Topological Methods, Different. Equat. and Dynam. Systems”, Dedicated to the 65th Birthday of Professor Massimo Furi (June 13–16, 2007, Firenze, Italy).

  19. E. Michael, “Continuous selections. I,” Ann. Math., 63, No. 2, 361–382 (1956).

    Article  MathSciNet  Google Scholar 

  20. Z. Dzedzej, “Equivariant selections and approximations,” Top. Meth. Nonlin. Analysis, 25–31 (1997).

  21. J. Blatter, P. D. Morris, and D. E. Wulbert, “Continuity of the set-valued metric projections,” Math. Ann., 178, No. 1, 12–24 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Brosowski and F. Deutsch, “Radial continuity of set-valued metric projections,” J. Approxim. Theory, 11, No. 3, 236–253 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  23. N. K. Prykarpatska, D. L. Blackmore, A. K. Prykarpatsky, and M. Pytel-Kudela, “On the inf-type extremality solutions to Hamilton-Jacobi equations and some generalizations,” Miskolc Math. Notes, 4, No. 2, 153–176 (2003).

    MathSciNet  Google Scholar 

  24. R. I. Wheeden and A. Zygmund, “Measure and integral,” in: Introduction to Real Analysis, Marcel Dekker, New York-Basel (1977).

    Google Scholar 

  25. V. P. Maslov, Asymptotic Methods for the Solution of Pseudodifferential Equations [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  26. S. N. Kruzhkov, “Generalized solutions of nonlinear equations of the first order with many independent variables, I,” Mat. Sb., 70, No. 3, 395–415 (1966).

    MathSciNet  Google Scholar 

  27. S. N. Kruzhkov, “Generalized solutions of nonlinear equations of the first order with many independent variables, II,” Mat. Sb., 70(114), No. 3, 109–134 (1967).

    Google Scholar 

  28. A. M. Samoilenko, A. K. Prykarpats’kyi and V. H. Samoilenko, “Lyapunov-Schmidt approach to studying homoclinic splitting in weakly perturbed Lagrangian and Hamiltonian systems,” Ukr. Mat. Zh., 55, No. 1, 82–92 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 1, pp. 100–106, January, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prykarpats’kyi, A.K. An infinite-dimensional Borsuk-Ulam-type generalization of the Leray-Schauder fixed-point theorem and some applications. Ukr Math J 60, 114–120 (2008). https://doi.org/10.1007/s11253-008-0046-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-008-0046-3

Keywords

Navigation