Skip to main content
Log in

Some modern aspects of the theory of impulsive differential equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We give a brief survey of the main results obtained in recent years in the theory of impulsive differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).

    Google Scholar 

  2. A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).

    MATH  Google Scholar 

  3. N. A. Perestyuk and O. S. Chernikova, “Stability of impulsive systems,” Ukr. Mat. Zh., 49, No. 1, 98–111 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  4. N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics [in Russian], Academy of Sciences of Ukr. SSR, Kiev (1937).

    Google Scholar 

  5. Yu. A. Mitropol’skii, A. M. Samoilenko, and N. A. Perestyuk, “On the problem of substantiation of the method of averaging for a second-order impulsive equation,” Ukr. Mat. Zh., 29, No. 6, 750–762 (1977).

    Google Scholar 

  6. Yu. A. Mitropol’skii, A. M. Samoilenko, and N. A. Perestyuk, “Method of averaging in impulsive systems,” Ukr. Mat. Zh., 37, No. 1, 56–64 (1985).

    MathSciNet  Google Scholar 

  7. Yu. A. Mitropol’skii, A. M. Samoilenko, and N. A. Perestyuk, Integral Sets of One Class of Impulsive Differential Equations [in Russian], Preprint, Institute of Mathematics, Academy of Sciences of Ukr. SSR, Kiev (1987).

    Google Scholar 

  8. V. Lakshmikantham, S. Leela, and S. Kaul, “Comparison principle for impulsive differential equations with variable times and stability theory,” Nonlin. Analysis: Theory, Methods, Appl., 22, Issue 4, 499–503 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. A. Boichuk, V. F. Zhuravlev, and A. M. Samoilenko, Generalized Inverse Operators and Noetherian Boundary-Value Problems [in Russian], Institute of Mathematics, Academy of Sciences of Ukr. SSR, Kiev (1995).

    Google Scholar 

  10. A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht (2004).

    MATH  Google Scholar 

  11. I. O. Dudzyanyi and M. O. Perestyuk, “On the stability of a trivial invariant torus of one class of impulsive systems,” Ukr. Mat. Zh., 50, No. 3, 338–349 (1998).

    Article  Google Scholar 

  12. N. Perestyuk and S. Doudzianiy, “Stability of invariant tori of impulsive systems,” in: Proceedings of the 25th Summer School “Applications of Mathematics in Engineering and Economics,” Sozopol, 1999, Heron Press, Sofia (2000), pp. 28–32.

    Google Scholar 

  13. N. Perestyuk and O. Chernikova, “Some conditions for stability of invariant sets of discontinuous dynamical systems,” in: Proceedings of the 25th Summer School “Applications of Mathematics in Engineering and Economics,” Sozopol, 1999, Heron Press, Sofia (2000), pp. 25–27.

    Google Scholar 

  14. M. O. Perestyuk and O. S. Chernikova, “On the stability of integral sets of discontinuous dynamical systems,” Ukr. Mat. Zh., 53, No. 1, 78–84 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Perestyuk and O. Chernikova, “On the stability of integral sets of impulsive differential systems,” Math. Notes, 2, No. 1, 48–60 (2001).

    MathSciNet  Google Scholar 

  16. K. Schneider, S. I. Kostadinov, and G. T. Stamov, “Integral manifolds of impulsive differential equations defined on torus,” Proc. Jpn. Acad. Sci. A, 75, 53–57 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  17. R. I. Gladilina and A. O. Ignat’ev, “On the stability of periodic systems with pulse influence,” Mat. Zametki, 76, Issue 1, 44–51 (2004).

    MathSciNet  Google Scholar 

  18. A. O. Ignat’ev, “Method of Lyapunov functions in the problem of stability of solutions of systems of impulsive differential equations,” Mat. Sb., 194, No. 10, 117–132 (2003).

    MathSciNet  Google Scholar 

  19. R. I. Gladilina and A. O. Ignat’ev, “Investigation of stability of impulsive systems with respect to a part of variables by the method of Lyapunov functions,” in: Proceedings of the 8th International Seminar “Stability and Oscillations in Nonlinear Control Systems” (STAB-04) [in Russian], Institute of Control Problems, Russian Academy of Sciences, Moscow (2004), pp. 53–61.

    Google Scholar 

  20. R. I. Gladilina and A. O. Ignat’ev, “On necessary and sufficient conditions for the asymptotic stability of impulsive systems,” Ukr. Mat. Zh., 55, No. 8, 1035–1043 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  21. A. A. Martynyuk and I. P. Stavroulakis, “Stability analysis of linear impulsive differential systems under structural perturbations,” Ukr. Mat. Zh., 51, No. 6, 784–795 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. A. Martynyuk and I. P. Stavroulakis, “Stability analysis with respect to two measures of impulsive systems under structural perturbations,” Ukr. Mat. Zh., 51, No. 11, 1476–1484 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. A. Martynyuk and K. A. Begmuratov, “Analytical construction of the hierarchical matrix Lyapunov function for impulsive systems,” Ukr. Mat. Zh., 49, No. 4, 548–557 (1997).

    Article  MathSciNet  Google Scholar 

  24. A. A. Martynyuk and V. I. Slyn’ko, “On the stability of motion of a nonlinear impulsive system,” Prikl. Mekh., 40, No. 2, 134–144 (2004).

    MATH  MathSciNet  Google Scholar 

  25. A. I. Dvirnyi and V. I. Slyn’ko, “On the stability of linear impulsive systems with respect to a cone,” Dopov. Nats. Akad. Nauk Ukr., No. 4, 37–43 (2004).

    Google Scholar 

  26. A. I. Dvirnyi, “Sufficient conditions for practical and technical stability of quasilinear impulsive systems,” Prikl. Mekh., 41, No. 1, 135–141 (2005).

    MathSciNet  Google Scholar 

  27. V. Lakshmikantham and X. Liu, “Impulsive hybrid systems and stability theory,” Dynam. Syst. Appl., No. 7, 1–9 (1998).

  28. G. T. Stamov, “Stability of moving invariant manifolds for impulsive differential equations,” J. Techn. Univ. Plovdiv “Fundam. Sci. Appl.,” 7, 99–107 (1999).

    MathSciNet  Google Scholar 

  29. D. D. Bainov and I. M. Stamova, “Stability of sets for impulsive differential-difference equations with variable impulsive perturbations,” Commun. Appl. Nonlin. Anal., 5, No. 1, 69–81 (1998).

    MATH  MathSciNet  Google Scholar 

  30. G. T. Stamov, “Asymptotic stability in the large of the solutions of almost periodic impulsive differential equations,” Note Math., 25, No. 2, 75–83 (2005).

    MathSciNet  Google Scholar 

  31. G. T. Stamov, “Almost periodic functions of Lyapunov for impulsive differential equations,” Dynam. Contin. Discr. Impuls. Syst. A, 9, 339–351 (2002).

    MATH  MathSciNet  Google Scholar 

  32. M. U. Akhmetov and N. A. Perestyuk, “On the method of comparison for impulsive differential equations,” Differents. Uravn., 26, No. 9, 1475–1483 (1990).

    MATH  MathSciNet  Google Scholar 

  33. J. Angelova and A. Dishliev, “Continuous dependence and uniform stability of solutions of impulsive differential equations on impulsive moments,” Nonlin. Analysis: Theory, Methods Appl., 28, No. 5, 825–835 (1997).

    Article  MathSciNet  Google Scholar 

  34. C. Kou, S. Zhang, and S. Wu, “Stability analysis in terms of two measures for impulsive differential equations,” J. London Math. Soc., 66, No. 2, 142–152 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  35. C. Kou, S. Zhang, and Y. Duan, “Variational Lyapunov method and stability analysis for impulsive delay differential equations,” Comput. Math. Appl., 46, 1761–1777 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  36. S. Wu and X. Meng, “Boundedness of nonlinear differential systems with impulsive effect on random moments,” Acta Math. Appl. Sinica. Engl. Ser., 20, No. 1, 147–154 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  37. N. A. Perestyuk, A. M. Samoilenko, and A. N. Stanzhitskii, “On the existence of periodic solutions of some classes of systems of differential equations with random pulse influence,” Ukr. Mat. Zh., 53, No. 8, 1061–1079 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  38. N. A. Perestyuk and A. B. Tkach, “Periodic solutions of a weakly nonlinear system of partial differential equations with pulse influence,” Ukr. Mat. Zh., 49, No. 4, 601–605 (1997).

    Article  MathSciNet  Google Scholar 

  39. V. G. Samoilenko and K. K. Elgondyev, “On periodic solutions of linear differential equations with pulse influence,” Ukr. Mat. Zh., 49, No. 1, 141–148 (1997).

    Article  Google Scholar 

  40. A. M. Samoilenko, V. G. Samoilenko, and V. V. Sobchuk, “On periodic solutions of the equation for a nonlinear oscillator with pulse influence,” Ukr. Mat. Zh., 51, No. 6, 827–834 (1999).

    Article  MathSciNet  Google Scholar 

  41. Chen Yong-shao and Feng Wei-zhen, “Oscillations of second-order nonlinear ODE with impulses,” J. Math. Anal. Appl., 210, 150–169 (1997).

    Article  MathSciNet  Google Scholar 

  42. J. Graef and J. Karsai, “Intermittent and impulsive effect in second-order systems,” Nonlin. Analysis: Theory, Methods Appl., 30, No. 3, 1561–1571 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  43. D. Cheng and J. Yan, “Global existence and asymptotic behaviour of solutions of second-order nonlinear impulsive differential equations,” Int. J. Math. Math. Sci., 25, No. 3, 175–182 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  44. M. O. Perestyuk and V. Yu. Slyusarchuk, “Conditions for the existence of nonoscillating solutions of nonlinear differential equations with delay and pulse influence in a Banach space,” Ukr. Mat. Zh., 55, No. 6, 790–798 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  45. M. O. Perestyuk, “Global attractors of nonautonomous evolution equations without uniqueness of solution,” Nauk. Zap. Kyiv. Nats. Univ., 8, 81–87 (2004).

    Google Scholar 

  46. A. V. Babin and M. I. Vishik, Attractors of Evolution Equations [in Russian], Nauka, Moscow (1989).

    MATH  Google Scholar 

  47. A. V. Kapustyan and N. A. Perestyuk, “Global attractor of an evolution inclusion with pulse influence at fixed moments of time,” Ukr. Mat. Zh., 55, No. 8, 1058–1068 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  48. G. Iovane and O. V. Kapustyan, “Global attractors for impulsive reaction-diffusion equation,” Nelin. Kolyvannya, 8, No. 3, 319–328 (2005).

    MATH  MathSciNet  Google Scholar 

  49. A. A. Boichuk, N. A. Perestyuk, and A. M. Samoilenko, “Periodic solutions of impulsive differential systems in critical cases,” Differents. Uravn., 27, No. 9, 1516–1521 (1991).

    MathSciNet  Google Scholar 

  50. A. A. Boichuk and R. F. Khrashchevskaya, “Weakly nonlinear boundary-value problems for impulsive differential equations,” Ukr. Mat. Zh., 45, No. 2, 221–225 (1993).

    Article  MathSciNet  Google Scholar 

  51. A. M. Samoilenko and A. A. Boichuk, “Linear Noetherian boundary-value problems for impulsive differential systems,” Ukr. Mat. Zh., 44, No. 4, 564–568 (1992).

    Article  MathSciNet  Google Scholar 

  52. A. A. Boichuk, V. F. Zhuravlev, and A. M. Samoilenko, “Linear Noetherian boundary-value problems for impulsive differential systems with delay,” Differents. Uravn., 30, No. 10, 1677–1682 (1994).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 1, pp. 81–94, January, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perestyuk, M.O., Chernikova, O.S. Some modern aspects of the theory of impulsive differential equations. Ukr Math J 60, 91–107 (2008). https://doi.org/10.1007/s11253-008-0044-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-008-0044-5

Keywords

Navigation