Skip to main content

Advertisement

Log in

Exact inequalities for derivatives of functions of low smoothness defined on an axis and a semiaxis

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We obtain new exact inequalities of the form

$$\left\| {x^{(k)} } \right\|_q \leqslant K\left\| x \right\|_p^\alpha \left\| {x^{(r)} } \right\|_s^{1 - \alpha } $$

for functions defined on the axis R or the semiaxis R + in the case where

$$r = 2, k = 0, p \in (0,\infty ), q \in (0,\infty ], q > p, s = 1,$$

for functions defined on the axis R in the case where

$$r = 2, k = 1, q \in [2,\infty ), p = \infty , s = 1,$$

and for functions of constant sign on R or R + in the case where

$$r = 2, k = 0, p \in (0,\infty ), q \in (0,\infty ], q > p, s = \infty $$

and in the case where

$$r = 2, k = 1, p \in (0,\infty ), q = s s = \infty $$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Landau, “Einige Ungleichungen fur zweimal differenzierbare Funktion,” Proc. London Math. Soc., 13, 43–49 (1913).

    MATH  Google Scholar 

  2. J. Hadamard, “Sur le module maximum d’une fonction et de ses derivees,” C. R. Soc. Math. France, 41, 68–72 (1914).

    Google Scholar 

  3. G. H. Hardy and J. E. Littlewood, “Contribution to the arithmetic theory of series,” Proc. London Math. Soc., 11, No. 2, 411–478 (1913).

    Google Scholar 

  4. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge (1934).

    Google Scholar 

  5. G. E. Shilov, “On inequalities between derivatives,” Sb. Pabot Stud. Nauchn. Kruzhk. MGU, 17–27 (1937).

  6. A. N. Kolmogorov, “On inequalities between upper bounds of successive derivatives of a function on an infinite interval,” in: A. N. Kolmogorov, Selected Works [in Russian], Nauka, Moscow (1985), pp. 252–263.

    Google Scholar 

  7. B. Szökefalvi-Nagy, “Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung,” Acta Sci. Math., 10, 64–74 (1941).

    Google Scholar 

  8. V. V. Arestov and V. N. Gabushin, “Best approximation of unbounded operators by bounded operators,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 11, 42–63 (1995).

  9. M. K. Kwong and A. Zettl, Norm Inequalities for Derivatives and Differences, Springer, Berlin (1992).

    Google Scholar 

  10. V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).

    Google Scholar 

  11. V. N. Gabushin, “Inequalities for the norms of functions and their derivatives in the metrics of L p ,” Mat. Zametki, 1, No. 3, 291–298 (1967).

    MATH  MathSciNet  Google Scholar 

  12. G. G. Magaril-Il’yasov, Imbedding of Generalized Sobolev Classes and Inequalities for Derivatives [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Moscow (1980).

  13. G. G. Magaril-Il’yasov, “Inequalities for derivatives and duality,” Tr. Mat. Inst. Akad. Nauk SSSR, 161, 183–194 (1983).

    Google Scholar 

  14. V. N. Gabushin, “Some inequalities between derivatives of functions,” in: Methods of Regularization of Unstable Problems [in Russian], IMM UNTs AN SSSR (1976).

  15. G. G. Magaril-Il’yasov, “On Kolmogorov inequalities on a half-line,” Vestn. Mosk. Univ., Ser. Mat.-Mekh., 5, 33–41 (1976).

    Google Scholar 

  16. N. P. Korneichuk, V. F. Babenko, and A. A. Ligun, Extremal Properties of Polynomials and Splines [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 3, pp. 291–302, March, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.F., Kofanov, V.A. & Pichugov, S.A. Exact inequalities for derivatives of functions of low smoothness defined on an axis and a semiaxis. Ukr Math J 58, 325–339 (2006). https://doi.org/10.1007/s11253-006-0069-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-006-0069-6

Keywords

Navigation