Skip to main content
Log in

Different Approaches for Multiband Transport in Semiconductors

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We compare the well-known Kane model with a new multiband envelope function model, which presents many advantages with respect to the first one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt Brace College Publ., Forth Worth (1976).

    Google Scholar 

  2. W. T. Wenckebach, Essentials of Semiconductor Physics, Wiley, Chichester (1999).

    Google Scholar 

  3. M. Sweeney and J. M. Xu, “Resonant interband tunnel diodes,” Appl. Phys. Lett., 54, No.6, 546–548 (1989).

    Google Scholar 

  4. R. Q. Yang, M. Sweeny, D. Day, and J. M. Xu, “Interband tunneling in heterostructure tunnel diodes,” IEEE Trans. Electron Devices, 38, No.3, 442–446 (1991).

    Article  Google Scholar 

  5. S. R. White and L. J. Sham, “Electronic properties of flat-band semiconductor heterostructures,” Phys. Rev. Lett., 47, No.12, 879–882 (1981).

    Article  Google Scholar 

  6. N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer, “Self-consistent study of the resonant-tunneling diode,” Phys. Rev. B, 39, No.11, 7720–7735 (1989).

    Article  Google Scholar 

  7. E. O. Kane, “Energy band structure in p-type Germanium and Silicon,” J. Phys. Chem. Solids, 1, 82–89 (1956).

    Article  Google Scholar 

  8. E. O. Kane, “Zener tunneling in semiconductors,” J. Phys. Chem. Solids, 12, 181–188 (1959).

    Google Scholar 

  9. E. O. Kane, “The k⋅P method,” in: R. K. Willardson and A. C. Bear (editors), Semiconductors and Semimetals, Vol. 1, Academic Press, New York (1966), pp. 75–100.

    Google Scholar 

  10. M. G. Burt, “The justification for applying the effective-mass approximation to microstructure,” J. Phys: Condens. Matt., 4, 6651–6690 (1992).

    Article  Google Scholar 

  11. G. Borgioli, G. Frosali, and P. Zweifel, “Wigner approach to the two-band Kane model for a tunneling diode,” Transp. Theory Statist. Phys., 32, No.3–4, 347–366 (2003).

    MathSciNet  MATH  Google Scholar 

  12. J. Kefi, Analyse Mathematique et Numerique de Modeles Quantiques Pour Les Semiconducteurs, PhD Thesis, Paul Sabatier, Universite Toulouse III (2003).

  13. L. Barletti and L. Demeio, “Wigner-function approach to multi-band transport in semiconductor devices,” Proc. VI Congr. Naz. SIMAI, Chia Laguna (Cagliari, Italy), May, 27–31, 2002 (CD-rom).

  14. J. M. Luttinger and W. Kohn, “Motion of electrons and holes in perturbed periodic fields,” Phys. Rev., 97, 869–883 (1955).

    Article  MATH  Google Scholar 

  15. O. Morandi and M. Modugno, A Multi-Band Envelope Function Model for Quantum Transport in a Tunneling Diode, Preprint.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 6, pp. 742–748, June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgioli, G., Morandi, O., Frosali, G. et al. Different Approaches for Multiband Transport in Semiconductors. Ukr Math J 57, 883–890 (2005). https://doi.org/10.1007/s11253-005-0236-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-005-0236-1

Keywords

Navigation