Skip to main content
Log in

Jacobi Matrix Pair and Dual Alternative q-Charlier Polynomials

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

By using two operators representable by Jacobi matrices, we introduce a family of q-orthogonal polynomials, which turn out to be dual with respect to alternative q-Charlier polynomials. A discrete orthogonality relation and the completeness property for these polynomials are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver and Boyd, Edinburgh (1965).

    Google Scholar 

  2. Yu. M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators, American Mathematical Society, Providence, RI (1968).

    Google Scholar 

  3. B. Simon, “The classical moment problem as a self-adjoint finite difference operator,” Adv. Math., 137, No.1, 82–203 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Koekoek and R. F. Swarttouw, The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue, Delft Univ. Technol., Rept 98-17 (1998), Available from ftp.tudelft.nl.

  5. R. Askey and J. A. Wilson, “A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols,” SIAM J. Math. Anal., 10, No.5, 1008–1016 (1979).

    Article  MathSciNet  Google Scholar 

  6. R. Askey and J. A. Wilson, “Some basic hypergeometric polynomials that generalize Jacobi polynomials,” Mem. AMS, 54, No.319, 1–53 (1985).

    MathSciNet  Google Scholar 

  7. E. Koelink and J. Kustermans, “A locally compact quantum group analogue of the normalizer of SU(1, 1) in SL(2, ℂ),” Commun. Math. Phys., 233, No.2, 231–296 (2003).

    MathSciNet  Google Scholar 

  8. G. E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge (1999).

    Google Scholar 

  9. G. Gasper and M. Rahman, Basic Hypergeometric Functions, Cambridge University Press, Cambridge (1990).

    Google Scholar 

  10. P. Terwilliger, “Two linear transformations each tridiagonal with respect to an eigenbasis of the other,” Linear Algebra Its Appl., 330, No.1–3, 149–203 (2001).

    MATH  MathSciNet  Google Scholar 

  11. C. Berg and J. P. R. Christensen, “Density questions in the classical theory of moments,” Ann. Inst. Fourier, 31, No.3, 99–114 (1981).

    MathSciNet  Google Scholar 

  12. N. Ciccoli, E. Koelink, and T. H. Koornwinder, “q-Laguerre polynomials and big q-Bessel functions and their orthogonality relations,” Meth. Appl. Anal., 6, No.1, 109–127 (1999).

    MathSciNet  Google Scholar 

  13. M. E. H. Ismail, “Orthogonality and completeness of q-Fourier type systems,” Z. Anall. Ihre Anwend., 20, No.3, 761–775 (2001).

    MATH  MathSciNet  Google Scholar 

  14. M. N. Atakishiyev, N. M. Atakishiyev, and A. U. Klimyk, “Big q-Laguerre and q-Meixner polynomials and representations of the quantum algebra U q (su1, 1),” J. Phys. A: Math. Gen., 36, No.41, 10335–10347 (2003).

    Article  MathSciNet  Google Scholar 

  15. N. M. Atakishiyev and A. U. Klimyk, “On q-orthogonal polynomials, dual to little and big q-Jacobi polynomials,” J. Math. Anal. Appl., 294, No.1, 246–257 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 5, pp. 614–621, May, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atakishiyev, N.M., Klimyk, A.U. Jacobi Matrix Pair and Dual Alternative q-Charlier Polynomials. Ukr Math J 57, 728–737 (2005). https://doi.org/10.1007/s11253-005-0223-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-005-0223-6

Keywords

Navigation