Skip to main content
Log in

Determining urban exploiter status of a termite using genetic analysis

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urban ecosystems are characterized by “urban exploiters”: species that thrive in the modified environment of cities. Few insects have been categorized as such, in part because they are usually considered as pests first, in part because many studies do not identify to species, and in part because many insects can survive in small vegetated areas within the urban matrix. Some termites may be prime examples of urban exploiters; Coptotermes species are rare in natural forests, but are abundant and major pests in urban areas. We investigated the genetic structure of the South East Asian species Coptotermes gestroi in the urban nation of Singapore. There was a panmictic population across the city, yet all 29 colonies were genetically distinct, and many had expanded from recent bottlenecks. There were no significant differences between colonies in vegetated areas (forests and parks), and those in urban habitats. The genetic pattern is similar to some other urban exploiter species in comparable environments, thus confirming C. gestroi is a native species that has become an urban exploiter, the first termite to be considered as such.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl l6:506–519

    Article  Google Scholar 

  • Blair RB, Launer AE (1997) Butterfly diversity and human land use: species assemblages along an urban gradient. Biol Conserv 80:113–125

    Article  Google Scholar 

  • Bouillon A, Mathot G (1965) Quel est ce termite Africain? Zooleo 1:1–23

    Google Scholar 

  • Bulmer MS, Adams ES, Traniello JFA (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav Ecol Sociobiol 49:236–243

    Article  Google Scholar 

  • Clark PJ, Reed JM, Chew FS (2007) Effects of urbanization on butterfly species richness, guild structure, and rarity. Urban Ecosyst 10:321–337

    Article  Google Scholar 

  • Clarke KM, Fisher BL, LeBuhn G (2008) The influence of urban park characteristics on ant (hymenoptera, Formicidae) communities. Urban Ecosyst 11:317–334

    Article  Google Scholar 

  • Dronnet S, Chapuisat M, Vargo EL, Lohou C, Bagnères AG (2005) Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol Ecol 14:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Eggleton P, Bignell DE, Sands WA, Mawdsley NA, Lawton JH, Wood TG, Bignell NC (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest reserve, southern Cameroon. Phil Trans Roy Soc B 351:51–68

    Article  Google Scholar 

  • Eggleton P, Bignell DE, Hauser S, Dibog L, Norgrove L, Madong B (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agric Ecosyst Environ 90:189–202

    Article  Google Scholar 

  • Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474

    Article  CAS  PubMed  Google Scholar 

  • Fattorini S (2011) Insect extinction by urbanization: a long term study in Rome. Biol Conserv 144:370–375

    Article  Google Scholar 

  • Forschler BT, Jenkins TM (2004) Subterranean termites in the urban landscape: understanding their social structure is the key to successfully implementing population management using bait technology. Urban Ecosyst 4:231–251

    Article  Google Scholar 

  • Frankie GW, Ehler LE (1978) Ecology of insects in urban environments. Annu Rev Entomol 23:367–387

    Article  Google Scholar 

  • Gaston KF (2010) Urban ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gathorne-Hardy FJ, Jones DT, Syaukani (2002) A regional perspective on the effects of human disturbance on the termites of Sundaland. Biodivers Conserv 11:1991–2006

    Article  Google Scholar 

  • Ghesini S, Puglia G, Marini M (2011) First report of Coptotermes gestroi in Italy and Europe. B Insectol 64:53–54

    Google Scholar 

  • Gibb H, Hochuli DF (2002) Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol Conserv 106:91–100

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www2.unil.ch/popgen/softwares/fstat.htm

  • Harris WW (1966) The role of termites in tropical forestry. Insect Soc 13:255–266

    Article  Google Scholar 

  • Helden AJ, Stamp GC, Leather SR (2012) Urban biodiversity: comparison of insect assemblages on native and non-native trees. Urban Ecosyst 15:611–624

    Article  Google Scholar 

  • Husseneder C, Messenger MT, NY S, Grace JK, Vargo EL (2005) Colony social organization and population genetic structure of an introduced population of Formosan subterranean termite from New Orleans, Louisiana. J Econ Entomol 98:1421–1434

    Article  CAS  PubMed  Google Scholar 

  • Husseneder C, Simms DM, Delatte JR, Wang CL, Grace JK, Vargo EL (2012) Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biol Invasions 14:419–437

    Article  Google Scholar 

  • Jacob G, Prévot-Julliard AC, Baudry E (2015) The geographic scale of genetic differentiation in the feral pigeon (Columba livia): implications for management. Biol Invasions 17:23–29

    Article  Google Scholar 

  • Jenkins TM, Jones SC, Lee CY, Forschler BT, Chen Z, Lopez-Martinez G, Gallagher NT, Brown G, Neal M, Thistleton B, Kleinschmid S (2007) Phylogeography illuminates maternal origins of exotic Coptotermes gestroi (Isoptera: Rhinotermitidae). Mol Phylogen Evol 42:612–621

    Article  CAS  Google Scholar 

  • Jones DT, Susilo FX, Bignell DE, Hardiwinoto S, Gillison AN, Eggleton P (2003) Termite assemblage collapse along a land-use intensification gradient in lowland Central Sumatra, Indonesia. J Appl Ecol 40:380–391

    Article  Google Scholar 

  • Kajdacsi B, Costa F, Hyseni C, Porter F, Brown J, Rodrigues G, Farias H, Reis MG, Childs JE, Ko AI, Caccone A (2013) Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil. Mol Ecol 22:5056–5070

    Article  PubMed  Google Scholar 

  • Kekkonen J, Hanski IK, Jesne H, Väisänen RA, Brommer JE (2011a) Increased genetic differentiation in house sparrows after a strong population decline: from panmixia towards structure in a common bird. Biol Conserv 144:2931–2940. doi:10.1016/j.biocon.2011.08.012

    Article  Google Scholar 

  • Kekkonen J, Seppa P, Hanski IK, Jensen H, Väisänen RA, Brommer JE (2011b) Low genetic differentiation in a sedentary bird: house sparrow population genetics in a contiguous landscape. Heredity 106:183–190. doi:10.1038/hdy.2010.32

    Article  CAS  PubMed  Google Scholar 

  • Koh LP, Sodhi NS (2004) Importance of reserves, fragments, and parks for butterfly conservation in a tropical urban landscape. Ecol Appl 14:1695–1708

    Article  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour doi. doi:10.1111/1755-0998.12387

    Google Scholar 

  • Krishna K, Grimaldi DA, Engel MS (2013) Treatise on the Isoptera of the world: Vol. 3. Bull Am Mus Nat Hist 377:627–976

    Google Scholar 

  • Lee CY (2002) Subterranean termite pests and their control in the urban environment in Malaysia. Sociobiology 40:3–9

    Google Scholar 

  • Lee CY, Vongkaluang C, Lenz M (2007) Challenges to subterranean termite management of multi-genera faunas in Southeast Asia and Australia. Sociobiology 50:213–221

    Google Scholar 

  • Lee TRC, Cameron SL, Evans TA, Ho SYW, Lo N (2015) The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers. Mol Phylogen Evol 82:234–244

    Article  Google Scholar 

  • Leniaud L, Pichon A, Uva P, Bagnères A-G (2009) Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species. B Entomol Res 98:1–10

    Article  Google Scholar 

  • Li HF, Fujisaki I, Su NY (2013) Predicting habitat suitability of Coptotermes gestroi (Isoptera: Rhinotermitidae) with species distribution models. J Econ Entomol 106:311–321

    Article  PubMed  Google Scholar 

  • Lim HC, Sodhi NS (2004) Responses of avian guilds to urbanisation in a tropical city. Landscape Urban Plan 66:199–215

    Article  Google Scholar 

  • Liu Y, Webber S, Bowgen K, Schmaltz L, Bradley K, Halvarsson P, Abdelgadir M, Griesser M (2013) Environmental factors influence both abundance and genetic diversity in a widespread bird species. Ecol Evol 3:4683–4695

    Article  PubMed  PubMed Central  Google Scholar 

  • MacDougall-Shackleton EA, Clinchy M, Zanette L, Neff BD (2011) Songbird genetic diversity is lower in anthropogenically versus naturally fragmented landscapes. Conserv Genet 12:1195–1203

    Article  Google Scholar 

  • Matteson KC, Langellotto GA (2010) Determinates of inner city butterfly and bee species richness. Urban Ecosyst 13:333–347

    Article  Google Scholar 

  • McIntyre NE (2000) Ecology of urban arthropods: a review and a call to action. Ann Entomol Soc Am 93:825–835

    Article  Google Scholar 

  • McIntyre NE, Rango J, Fagan WF, Faeth SH (2001) Ground arthropod community structure in a heterogeneous urban environment. Landscape Urban Plan 52:257–274

    Article  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • Messenger MT, Mullins AJ (2005) New flight distance recorded for Coptotermes formosanus (Isoptera: Rhinotermitidae). Florida Entomol 88:99–100

    Article  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Ohkuma M, Brune A (2011) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of temites: a modern synthesis. Springer, Dordrecht, pp 413–438

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perdereau E, Velona A, Dupont S, Labédan M, Luchetti A, Mantovani B, Bagnères AG (2013) Colony breeding structure of the invasive termite Reticulitermes urbis. J Econ Entomol 106:2216–2224

    Article  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Raupp MJ, Shrewsbury PM, Herms DA (2010) Ecology of herbivorous arthropods in urban landscapes. Annu Rev Entomol 55:19–38

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Heredity 86:248–249

    Article  Google Scholar 

  • Robinson WH (2005) Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Root JJ, Puskas RB, Fischer JW, Swope CB, Neubaum MA, Reeder SA, Piaggio AJ (2009) Landscape genetics of raccoons (Procyon lotor) associated with ridges and valleys of Pennsylvania: implications for oral rabies vaccination programs. Vector-Borne Zoonot 9:583–588

    Article  Google Scholar 

  • Santonastaso TT, Dubach J, Hauver SA, Graser WH, Gehrt SD (2012) Microsatellite analysis of raccoon (Procyon lotor) population structure across an extensive metropolitan landscape. J Mammal 93:447–455

    Article  Google Scholar 

  • Sattler T, Duelli P, Obrist MK, Arlettaz R, Moretti M (2010) Response of arthropod species richness and functional groups to urban habitat structure and management. Landscape Ecol 25:941–954

    Article  Google Scholar 

  • Signorile AL, Wang J, Lurz PWW, Bertolino S, Carbone C, Reuman DC (2014) Do founder size, genetic diversity and structure influence rates of expansion of north American grey squirrels in Europe? Divers Distrib 20:918–930

    Article  Google Scholar 

  • Tan PY, Wang J, Sia A (2013) Perspectives on five decades of the urban greening of Singapore. Cities 32:24–32

    Article  Google Scholar 

  • Tho YP (1992) Termites of peninsula Malaysia. Malayan Forest records no. 36. Forest Research Institute Malaysia, Kuala Lumpur

    Google Scholar 

  • Thorne BL, Traniello JFA, Adams ES, Bulmer M (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera: Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol Ecol Evol 11:149–169

    Article  Google Scholar 

  • Vangestel C (2011) Relating phenotypic and genetic variation to urbanization in avian species: a case study on house sparrows (Passer domesticus). PhD thesis, Ghent University, Belgium. ISBN 978–94–9069-571-2

  • Vangestel C, Mergeay J, Dawson DA, Vandomme V, Lens L (2011) Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient. Heredity 109:163–172

    Article  Google Scholar 

  • Vargo EL, Henderson G (2000) Identification of polymorphic microsatellite loci in the Formosan subterranean termite, Coptotermes formosanus Shiraki. Mol Ecol 9:1919–1952

    Article  Google Scholar 

  • Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403. doi:10.1146/annurev.ento.54.110807.090443

    Article  CAS  PubMed  Google Scholar 

  • Vargo EL, Husseneder C, Woodson WD, Waldvogel MG, Grace JK (2006) Genetic analysis of colony and population structure of three introduced populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in the continental United States. Environ Entomol 35:151–166

    Article  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Article  Google Scholar 

  • Winnepenninckx B, Backeljau T, Dewachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9:407

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1950) Genetical structure of populations. Nature 166:247–249

    Article  CAS  PubMed  Google Scholar 

  • Yeap BK, Othman AS, Lee CY (2009) Molecular systematics of Coptotermes (Isoptera: Rhinotermitidae) from East Asia and Australia. Ann Entomol Soc Am 102:1077–1090

    Article  Google Scholar 

  • Yeap BK, Othman AS, Lee CY (2011) Genetic analysis of population structure of Coptotermes gestroi (Isoptera: Rhinotermitidae) in native and introduced populations. Environ Entomol 40:470–476

    Article  Google Scholar 

  • Yu HT, Peng YH (2002) Population differentiation and gene flow revealed by microsatellite DNA markers in the house mouse (Mus musculus castaneus) in Taiwan. Zool Sci 19:475–483

    Article  CAS  PubMed  Google Scholar 

  • Zorzenon FJ, Campos AEC (2015) Subterranean termites in urban forestry: tree preference and management. Neotrop Entomol 44:180–185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joshua Sim Shi Jie, Lahiru Wijedasa (NUS) and Jerry Hu (Aardwolf PestKare) for help with collecting samples. We thank the LHK fund of the Department of Biological Sciences, NUS, and SMART – CENSAM for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore A. Evans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Evans, T.A. Determining urban exploiter status of a termite using genetic analysis. Urban Ecosyst 20, 535–545 (2017). https://doi.org/10.1007/s11252-016-0628-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-016-0628-z

Keywords

Navigation