Skip to main content

Advertisement

Log in

Photosynthetic CO2 uptake and carbon sequestration potential of deciduous and evergreen tree species in an urban environment

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Urban tree planting programmes are increasingly promoted as a way to reduce atmospheric carbon dioxide (CO2) mixing ratios. However, few studies have investigated the photosynthetic CO2 uptake potential of different urban tree species across seasons. In particular little is known about photosynthetic CO2 uptake in cities with a subtropical, oceanic climate where evergreen species are dominant. We addressed this shortcoming by measuring net photosynthetic rates of ten native and exotic tree species during different seasons and times of the day in Auckland, New Zealand. We also assessed the potential of leaf nitrogen (N) concentration as a proxy for net photosynthetic capacities of urban trees, which is of particular importance to upscale leaf-level photosynthetic CO2 uptake to local and regional scales. In addition, we compared measured net photosynthetic capacities (light-saturated net photosynthetic rates) with carbon (C) sequestration rates estimated using tree growth measurements and allometric equations. Mean net photosynthetic capacities ranged between 2.37 and 10.48 μmol m−2 s−1 across all seasons and were closely related to tree C sequestration rates, suggesting that increased photosynthesis enhances growth rates and therefore tree C sequestration rates. Given that winter net photosynthetic capacities remained high in evergreen species (3.38–13.96 μmol m−2 s−1), with almost 50% higher mean net photosynthetic capacity compared to summer across all species, we suggest that tree planting programmes for CO2 mitigation should favour long living evergreen tree species with high basal area increments (BAI). Leaf N explained 43% and 57% of the variability of photosynthetic capacities across species in summer and winter, respectively. These results indicate that leaf N may be used as a proxy for net photosynthetic capacities of commonly planted urban trees in Auckland. However, further research is required to provide robust models that may be used to estimate photosynthetic CO2 uptake at a local and urban scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguaron E, McPherson EG (2012) Comparison of methods for estimating carbon dioxide storage by Sacramento’s urban forest. In: Lal R, Augustin B (eds) Carbon sequestration in urban ecosystems. Springer, Dordrecht, pp. 43–71

    Chapter  Google Scholar 

  • Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70:295–310. doi:10.1016/s0038-092x(00)00089-x

    Article  Google Scholar 

  • Amthor J (1994) Scaling CO2-photosynthesis relationships from the leaf to the canopy. Photosynth Res 39:321–350

    Article  CAS  PubMed  Google Scholar 

  • Auckland Council (2014) Low carbon Auckland - Auckland’s energy resilience and low carbon action plan. Auckland Council, Auckland

    Google Scholar 

  • Bassow SL, Bazzaz FA (1997) Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 109:507–515. doi:10.1007/s004420050111

    Article  CAS  PubMed  Google Scholar 

  • Beets PN, Kimberley MO, Oliver GR, Pearce SH, Graham JD, Brandon A (2012) Allometric equations for estimating carbon stocks in natural forest in New Zealand. Forests 3:818–839. doi:10.3390/f3030818

    Article  Google Scholar 

  • Blozan W (2008) Tree measuring guidelines of the eastern native tree society. Bulletin of the Eastern Native Tree Society 1(1):3–10

  • Bolstad PV, Reich PB, Lee T (2003) Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiol 23:969–976

    Article  Google Scholar 

  • Bown HE, Watt MS, Clinton PW, Mason EG, Richardson B (2007) Partitioning concurrent influences of nitrogen and phosphorus supply on photosynthetic model parameters of Pinus radiata. Tree Physiol 27:335–344. doi:10.1093/treephys/27.3.335

    Article  CAS  PubMed  Google Scholar 

  • Brack CL (2002) Pollution mitigation and carbon sequestration by an urban forest. Environ Pollut 116:195–200. doi:10.1016/S0269-7491(01)00251-2

    Article  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer AR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595. doi:10.1007/BF00329030

    Article  CAS  PubMed  Google Scholar 

  • Catoni R, Varone L, Gratani L (2013) Variations in leaf respiration across different seasons for Mediterranean evergreen species. Photosynthetica 51:295–304. doi:10.1007/s11099-013-0026-1

    Article  CAS  Google Scholar 

  • Chaves MM et al (2002) How plants cope with water stress in the field. Photosynth growth 89:907–916. doi:10.2307/2404512

    CAS  Google Scholar 

  • Christen A et al (2011) Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements. Atmos Environ 45:6057–6069. doi:10.1016/j.atmosenv.2011.07.040

    Article  CAS  Google Scholar 

  • Curran-Cournane F, Lear G, Schwendenmann L, Khin J (2015) Heavy metal soil pollution is influenced by the location of green spaces within urban settings. Soil Research 53:306–315

    Article  CAS  Google Scholar 

  • Edbrooke, S.W. (compiler) 2001: Geology of the Auckland area: scale 1:250,000. Lower Hutt: Institute of Geological & Nuclear Sciences Limited. Institute of Geological & Nuclear Sciences 1:250,000 geological 10.1007/s11252-016-0627-0 map 3. 74 p.

  • Escobedo F, Varela S, Zhao M, Wagner JE, Zipperer W (2010) Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities. Environ Sci Pol 13:362–372. doi:10.1016/j.envsci.2010.03.009

    Article  CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi:10.1007/BF00377192

    Article  PubMed  Google Scholar 

  • Evans JR (2011) Gas exchange and chlorophyll fluorescence. PrometheusWiki. http://prometheuswiki.publish.csiro.au/tikicitation.php?page=Gas%20exchange%20and%20chlorophyll%20fluorescence#sthash.ZcVDhkzX.dpuf. Accessed 25 July 2014

  • Freilich LE (1992) Predicting dimensional relationships for twin cities shade trees. University of Minnesota, Department of Forest Resources, St. Paul

    Google Scholar 

  • Gaston KJ (2010) Urban ecology. Cambridge University Press, New York

    Book  Google Scholar 

  • Grassi G, Vicinelli E, Ponti F, Cantoni L, Magnani F (2005) Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern Italy. Tree Physiol 25:349–360

    Article  PubMed  Google Scholar 

  • Helfter, C., Famulari, D., Phillips, G.J., Barlow, J.F., Wood, C.R., Grimmond, C.S.B., Nemitz, E. (2011) Controls of carbon dioxide concentrations and fluxes above central London. Atmospheric Chemistry and Physics 11(5): 1913 - 1928. doi:10.5194/acp-11-1913-2011

  • Jo H-K (2002) Impacts of urban greenspace on offsetting carbon emissions for middle Korea. J Environ Manag 64:115–126. doi:10.1006/jema.2001.0491

    Article  Google Scholar 

  • Jones HG (2007) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J Exp Bot 58:119–130. doi:10.1093/jxb/erl118

    Article  CAS  PubMed  Google Scholar 

  • Kimm H, Ryu Y (2015) Seasonal variations in photosynthetic parameters and leaf area index in an urban park. Urban For Urban Green 14:1059–1067. doi:10.1016/j.ufug.2015.10.003

    Article  Google Scholar 

  • Kirschbaum MU (2011) Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol 155:117–124. doi:10.1104/pp.110.166819

    Article  CAS  PubMed  Google Scholar 

  • Knyazikhin Y et al (2013) Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci U S A 110:E185–E192. doi:10.1073/pnas.1210196109

    Article  CAS  PubMed  Google Scholar 

  • Kubien DS, Jaya E, Clemens J (2007) Differences in the structure and gas exchange physiology of juvenile and adult leaves in Metrosideros excelsa. Int J Plant Sci 168(563):570

    Google Scholar 

  • Lahr EC, Schade GW, Crossett CC, Watson MR (2015) Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas. Glob Chang Biol 21:4221–4236. doi:10.1111/gcb.13010

    Article  PubMed  Google Scholar 

  • Liss K, Tooke TR, Heyman E, Coops N, Christen A (2010) Vegetation characteristics at the Vancouver EPiCC experimental sites vol EPiCC technical report no. 3. University of British Columbia, Canada

    Google Scholar 

  • Liu C, Li X (2012) Carbon storage and sequestration by urban forests in Shenyang, China. Urban For Urban Green 11:121–128. doi:10.1016/j.ufug.2011.03.002

    Article  Google Scholar 

  • Mackintosh L (2001) Overview of New Zealand Climate NIWA. http://www.niwa.co.nz/education-and-training/schools/resources/climate/overview. Accessed 18 July 2013

  • Mariappan M, Lingava S, Murugaiyan R, Krishnan V, Kolanuvada SR, Thirumeni RSL (2012) Carbon accounting of urban forest in Chennai City using Lidar data. Eur J Sci Res 81:314–328

    Google Scholar 

  • Martin ME, Plourde LC, Ollinger SV, Smith ML, McNeil BE (2008) A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems. Remote Sens Environ 112:3511–3519. doi:10.1016/j.rse.2008.04.008

    Article  Google Scholar 

  • McPherson EG (1998) Atmospheric carbon dioxide reduction by Sacramento’s urban forest. J Arboric 24:215–223

    Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905. doi:10.1093/aob/mcf079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myeong S, Nowak DJ, Duggin MJ (2006) A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens Environ 101:277–282. doi:10.1016/j.rse.2005.12.001

    Article  Google Scholar 

  • Nemitz E, Hargreaves KJ, McDonald AG, Dorsey JR, Fowler D (2002) Meteorological measurements of the urban heat budget and CO2 emissions on a city scale. Environ Sci Technol 36(14):3139–3146

    Article  CAS  PubMed  Google Scholar 

  • NIWA (2014) Climate summary for February. http://www.niwa.co.nz/climate-summary-for-february-2014. Accessed 2 Sept 2014

  • NIWA (2015) Climate data and activities. NIWA. https://www.niwa.co.nz/education-and- training/schools/resources/climate. Accessed 04 Sept 2015

  • Nowak DJ (1994) Chapter 6: Atmospheric carbon dioxide reduction by Chicago’s urban forest. In: McPherson EG, Gregory E, Nowak DJ, Rowntree RA (eds) Chicago’s urban forest ecosystem: Results of the Chicago urban forest climate project. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, PA, pp 83–94

  • Nowak DJ (1996) Estimating leaf area and leaf biomass of open-grown deciduous urban trees. For Sci 42:504–507

    Google Scholar 

  • Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389. doi:10.1016/s0269-7491(01)00214-7

    Article  CAS  PubMed  Google Scholar 

  • Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E (2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut 178:229–236. doi:10.1016/j.envpol.2013.03.019

    Article  CAS  PubMed  Google Scholar 

  • Ollinger SV et al (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proc Natl Acad Sci U S A 105:19336–19341. doi:10.1073/pnas.0810021105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peper PJ, McPherson EG, Mori SM (2001a) Equations for predicting diameter, height, crown width, and leaf area of San Joaquin Valley street trees. J Arboric 27:306–317

    Google Scholar 

  • Peper PJ, McPherson EG, Mori SM (2001b) Predictive equations for dimensions and leaf area of coastal southern California street trees. J Arboric 27:169–180

    Google Scholar 

  • Pérez-Harguindeguy N et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. doi:10.1071/BT12225

    Article  Google Scholar 

  • Perry E, Hickman GW (1999-2000) A survey to determine the baseline nitrogen leaf concentration of twenty-five landscape tree species. University of California, Division of Agriculture and Natural Resources 1 - 3

  • Peters EB, McFadden JP (2012) Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape. J Geophys Res Biogeosci 117:1–16. doi:10.1029/2011jg001933

    Google Scholar 

  • Pincetl S, Gillespie T, Pataki DE, Saatchi S, Saphores J-D (2012) Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns. GeoJournal. doi:10.1007/s10708-012-9446-x

    Google Scholar 

  • Raven JA, Cockell CS (2006) Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe). Astrobiology 6:668–675. doi:10.1089/ast.2006.6.668

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Karley AJ (2006) Carbon sequestration: photosynthesis and subsequent processes. Curr Biol 16:R165–R167. doi:10.1016/j.cub.2006.02.041

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Kloeppel DS, Ellsworth DS, Walters MB (1995) Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia 104:24–30. doi:10.1007/BF00365558

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Article  Google Scholar 

  • Ripullone F, Grassi G, Lauteri M, Borghetti M (2003) Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus x euroamericana in a mini-stand experiment. Tree Physiol 23:137–144

    Article  PubMed  Google Scholar 

  • Roloff A (2016) Urban tree management for the sustainable development of green cities. Wiley, Chichester

    Google Scholar 

  • Rowntree RA, Nowak DJ (1991) Quantifying the role of urban forests in removing atmospheric carbon dioxide. J Arboric 17:269–275

    Google Scholar 

  • Schwendenmann L, Mitchell ND (2014) Carbon accumulation by native trees and soils in an urban park, Auckland. NZ. J Ecol 38(213):220

    Google Scholar 

  • Searle SY, Turnbull MH, Boelman NT, Schuster WS, Yakir D, Griffin KL (2012) Urban environment of New York City promotes growth in northern red oak seedlings. Tree Physiol 32:389–400. doi:10.1093/treephys/tps027

    Article  PubMed  Google Scholar 

  • Semenzato P, Cattaneo D, Dainese M (2011) Growth prediction for five tree species in an Italian urban forest. Urban For Urban Green 10:169–176. doi:10.1016/j.ufug.2011.05.001

    Article  Google Scholar 

  • Shrestha R, Wynne RH (2012) Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging Lidar. Remote Sens 4:484–508. doi:10.3390/rs4020484

    Article  Google Scholar 

  • Soares AL, Rego FC, McPherson EG, Simpson JR, Peper PJ, Xiao Q (2011) Benefits and costs of street trees in Lisbon, Portugal. Urban For Urban Green 10:69–78. doi:10.1016/j.ufug.2010.12.001

    Article  Google Scholar 

  • Soegaard H, Moller-Jensen L (2003) Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements. Remote sensing of the. Environment 87(2–3):283–294. doi:10.1016/s0034-4257(03)00185-8

    Google Scholar 

  • Stoffberg GH, van Rooyen MW, van der Linde MJ, Groeneveld HT (2010) Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa. Urban For Urban Green 9:9–14. doi:10.1016/j.ufug.2009.09.004

    Article  Google Scholar 

  • Strohbach MW, Haase D (2012) Above-ground carbon storage by urban trees in Leipzig, Germany - analysis of patterns in a European City. Landsc Urban Plan:95–104

  • Velasco E, Roth M (2010) Cities as net sources of CO2: review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geography Compass 14(9):1238–1259. doi:10.1111/j.1749-8198.2010.00384.x

    Article  Google Scholar 

  • Velasco E, Roth M, Tan SH, Quak M, Nabarro SDA, Norford L (2013) The role of vegetation in the CO2 flux from a tropical urban neighbourhood. Atmos Chem Phys Discuss 13:7267–7310. doi:10.5194/acp-13-10185-2013

    Article  Google Scholar 

  • Wang W, Pataki DE (2010) Spatial patterns of plant isotope tracers in the Los Angeles urban region. Landsc Ecol 25:35–52. doi:10.1007/s10980-009-9401-5

    Article  CAS  Google Scholar 

  • Weissert LF, Salmond JA, Schwendenmann L (2014) A review of the current progress in quantifying the potential of urban forests to mitigate urban CO2 emissions. Urban Climate 8:100–125. doi:10.1016/j.uclim.2014.01.002

    Article  Google Scholar 

  • Whitlow TH, Bassuk NL, Reichert DL (1992) A 3-year study of water relations of urban street trees. J Appl Ecol 29:436–450. doi:10.2307/2404512

    Article  Google Scholar 

  • Wilcox MD (2012) Auckland’s remarkable urban forest. Auckland Botanical Society, Auckland

    Google Scholar 

  • Wyse SV, Macinnis-Ng CMO, Burns BR, Clearwater MJ, Schwendenmann L (2013) Species assemblage patterns around a dominant emergent tree are associated with drought resistance. Tree Physiol 33(12):1269–1283

  • Yang J, McBride J, Zhou J, Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 3:65–78. doi:10.1016/j.ufug.2004.09.001

    Article  Google Scholar 

  • Zanne, A.E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J. , Jansen, S. , Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C., Chave, J. (2009) Global wood density database. Leeds, UK

  • Zhang D et al (2015) Effects of forest type and urbanization on carbon storage of urban forests in Changchun, Northeast China. Chin Geogr Sci 25:147–158. doi:10.1007/s11769-015-0743-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Weissert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weissert, L.F., Salmond, J.A. & Schwendenmann, L. Photosynthetic CO2 uptake and carbon sequestration potential of deciduous and evergreen tree species in an urban environment. Urban Ecosyst 20, 663–674 (2017). https://doi.org/10.1007/s11252-016-0627-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-016-0627-0

Keywords

Navigation