Skip to main content

Advertisement

Log in

Spatio-temporal analysis of urban temperature in Bandung City, Indonesia

Urban Ecosystems Aims and scope Submit manuscript

Abstract

This study presents an evaluation of urban micro-climate about the exsistence level urban vegetation, in association with the urban temperature (surface temperature) and urban built-up area of Bandung City. The changes in urban vegetation cover, urban temperature, and urban built-up area observed using Landsat 5 TM and Landsat 7 ETM + bands were evaluated on the basis of the WDRVI (Wide Dynamic Range Vegetation Indices), NDBI (Normalized Difference Built-up Index), and SAVI (Soil-Adjusted Vegetation Index). It was found that, due to the uncontrolled urban growth and the removal of urban vegetation cover and urban green space, there was a significant increase in urban temperature, in NDBI, but a decrease in WDRVI. The maximum urban temperatures, NDBI, and the minimum values of WDRVI indices were established in 2009. Therefore the results indicate a significant effect of higher density of impervious surfaces coverage (urban built-up area) contributing significantly to the increase of urban temperature. Again the results also confirm that urban vegetation landscape coverage in the surrounding of industrial area reduced the urban temperature. Based on the results, we recommend the city government to provide more urban green space by cooperating with private land owner, in order to decrease urban temperature and create a healthier living environment for urban inhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

TM:

Thematic mapper

ETM+:

Enhanced thematic mapper plus

WDRVI:

Wide dynamic range vegetation index

SAVI:

Soil-adjusted vegetation index

NDBI:

Normalized difference built-up Index

References

  • Barsi JA, Schott JR, Palluconi FD, Helder DL, Hook SJ, Markham BL, Chander G, O’Donnell EM (2003) Landsat TM and ETM + thermal band calibration. Can J Remote Sens 29:141–153

    Article  Google Scholar 

  • Barsi JA, Hook SJ, Schott JR, Raqueno NG, Markham BL (2007) Landsat-5 thematic mapper thermal band calibration update. IEEE Trans Geosci Remote Sens 44:552–555

    Article  Google Scholar 

  • BMKG (Meteorological and Geophysical Bureau of Bandung City) (2011) Climate data of Bandung City year 1990–2010. Bandung, West Java. Indonesia

  • Carlson TN, Gillies RR, Perry EM (1994) A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens Rev 9:161–173

    Article  Google Scholar 

  • Chrysoulakis N (2003) Estimation of the all-wave net radiation balance in urban environment with the combined use of terra/ASTER multispectral imagery and in-situ spatial data. J Geophys Res 108(D18):4582. doi:10.1029/2003JD003396

    Article  Google Scholar 

  • Excelisvis (2006) ENVI classic tutorial: decision tree classification. http://www.exelisvis.com/portals/0/pdfs/envi/Decision_Tree.pdf. Accessed 1 October 2012

  • Gallo KP, Owen TW (1998) Assessment of urban heat island: a multi-sensor perspective for the Dallas-Ft.Worth, USA region. Geocart Int 13:35–41

    Article  Google Scholar 

  • Gillies RR, Carlson TN (1995) Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J Appl Meteorol 34:745–756

    Article  Google Scholar 

  • Gillies RR, Carlson TN, Cui J, Kustas WP, Humes KS (1997) A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation index (NDVI) and surface radiant temperature. Int J Remote Sens 18:3145–3166

    Article  Google Scholar 

  • Gitelson AA (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol 161:165–173

    Article  CAS  PubMed  Google Scholar 

  • Government of Bandung City (2011). Climate and region. http://www.bandung.go.id/?fa=sekilas.detail&id=12. Accessed 24 September 2012

  • Government of West Java Province (2011). Population. http://www.jabarprov.go.id/index.php/subMenu/75. Accessed 17 April 2013

  • Goward SN, Xue Y, Czajkowski KP (2002) Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model. Remote Sens Environ 79:225–242

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 3:295–309

    Article  Google Scholar 

  • Jackson RD, Huete AR (1991) Interpreting vegetation indices. Prev Veterin Med 11:185–200

    Article  Google Scholar 

  • Jiménez-Muñoz JC, Sobrino JA (2003) A generalized single channel method for retrieving land surface temperature from remote sensing data. J Geophys Res 108(D22):4688. doi:10.1029/2003JD003480

    Article  Google Scholar 

  • Jones HG, Vaughan RA (2010) Remote sensing of vegetation: principles, techniques, and applications. Oxford University Press, UK

    Google Scholar 

  • Lo CP, Quattrochi DA, Luvall JC (1997) Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int J Remote Sens 18:287–304

    Article  Google Scholar 

  • Lu D, Weng Q (2006) Use of impervious surface in urban land use classification. Remote Sens Environ 102:146–160

    Article  Google Scholar 

  • Mahfouf JF, Richard E, Mascart P (1987) The influence of soil and vegetation on the development of mesoscale circulation. J Appl Meteorol 26:1483–1495

    Article  Google Scholar 

  • McPherson RA (2007) A review of vegetation—atmosphere interactions and their influences on mesoscale phenomena. Prog Phys Geogr 31:261–285

    Article  Google Scholar 

  • NASA (1998) Landsat 7 science data users handbook. Retrieved October 7, 2012. http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf

  • Ray TW (1994) Vegetation in remote sensing FAQs, applications. ER Mapper Ltd, Perth

    Google Scholar 

  • Schowengerdt RA (1997) Remote sensing, models and methods for image processing, 2nd edn. Academic, London

    Google Scholar 

  • Sebari I, He D-C (2013) Automatic fuzzy object-based analysis of VHSR images for urban objects extraction. ISPRS J Photogram and Rem Sens 79:171–184

    Article  Google Scholar 

  • Sobrino JA, Jiménez-Muñoz JC, Paolini L (2004) Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ 90:434–440

    Article  Google Scholar 

  • Statistical Beaureu of Bandung City. Population year 2011. http://bandungkota.bps.go.id/ Accessed 24 September 2012

  • Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93:1879–1900

    Article  Google Scholar 

  • Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build 25:99–103

    Article  Google Scholar 

  • Voogt J, Oke T (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384

    Article  Google Scholar 

  • Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89:467–483

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 3:583–594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatwa Ramdani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramdani, F., Setiani, P. Spatio-temporal analysis of urban temperature in Bandung City, Indonesia. Urban Ecosyst 17, 473–487 (2014). https://doi.org/10.1007/s11252-013-0332-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-013-0332-1

Keywords

Navigation