Skip to main content
Log in

Methane mitigation from ruminants using tannins and saponins

  • Review Article
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

BCM:

Bromochloromethane

BW:

Body weight

CT:

Condensed tannins

DDMI:

Digestible dry matter intake

DE:

Digestible energy

DM:

Dry matter

DMI:

Dry matter intake

GE:

Gross energy

HT:

Hydrolysable tannins

MR:

Methane reduction on volume basis

MRTD :

Methane reduction on truly degraded substrate basis

OMD:

Organic matter digestibility

PSM:

Plant secondary metabolites

QSE:

Quillaja saponaria extract

SCFAs:

Short-chain fatty acids

TP:

Total phenols

TT:

Total tannins

References

  • Abdalla, A.L., Godoy, P.B., Longo C., Araujo Neto, J.C., Peçanha M.R.S.R., Bueno, I.C.S., Vitti, D.M.S.S. and Sallam, S.M.A., 2007. Methane emission, protozoa and methanogen counts in sheep fed coconut oil of a Brazillian tannin-rich plant (Mimosa casealpineaefolia), Microbial Ecology in Health and Disease, 19, 33.

    Google Scholar 

  • Abdulrazak, S.A., Fujihara, T., Ondiek, J.K. and Ørskov, E. R., 2000. Nutritive evaluation of some Acacia tree leaves from Kenya, Animal Feed Science and Technology, 85, 89–98.

    Article  CAS  Google Scholar 

  • Abreu, A., Carulla, J.E., Lascano, C.E., Díaz T.E., Kreuzer, M. and Hess, H.D., 2004. Effects of Sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume, Journal of Animal Science, 82, 1392–1400.

    PubMed  CAS  Google Scholar 

  • Animut, G., Puchala, R., Goetsch, A.L., Patra, A.K., Sahlu, T., Varel, V.H. and Wells, J., 2008. Methane emission by goats consuming diets with different levels of condensed tannins from Lespedeza, Animal Feed Science and Technology, 144, 212–227

    Article  CAS  Google Scholar 

  • Beauchemin, K.A., McGinn, S.M., Martinez, T. F. and McAllister, T.A., 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle, Journal of Animal Science, 85, 1990–1996.

    Article  PubMed  CAS  Google Scholar 

  • Beauchemin, K.A., Kreuzer, M., O’Mara, F. and McAllister T.A., 2008. Nutritional management for enteric methane abatement: a review, Australian Journal of Experimental Agriculture, 48, 21–27.

    Article  CAS  Google Scholar 

  • Bento, B.H.L., Acamovic, T., and Makkar, H.P.S., 2005. The influence of tannin, pectin, and polyethylene glycol on attachment of 15N–labelled rumen microorganisms to cellulose, Animal Feed Science and Technology, 122, 41–57.

    Article  CAS  Google Scholar 

  • Carulla, J. E, Kreuzer, M., Machmueller, A. and Hess, H.D., 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage—fed sheep, Australian Journal of Agricultural Research, 56, 961–970.

    Article  CAS  Google Scholar 

  • Cheeke, P.R., 1999. Actual and potential application of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition, Proceedings of the American Society of Animal Science, 1–10.

  • Denman, S.E. and McSweeney, C.S., 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen, FEMS Microbiology Ecology, 58, 572–582.

    Article  PubMed  CAS  Google Scholar 

  • Dohme, F., Machmu¨ller, A., Estermann, B.L., Pfister, P., Wasserfallen, A. and Kreuzer, M., 1999. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil, Letters in Applied Microbiology, 29, 187–192.

    Article  Google Scholar 

  • Flachowsky, G. and Lebzien, P., 2009. Comments on in vitro studies with methane inhibitors, Animal Feed Science and Technology, 151, 337–339.

    Article  Google Scholar 

  • Goel, G., Makkar, H.P.S. and Becker, K., 2008a. Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane, Animal Feed Science and Technology, 147, 72–89.

    Article  CAS  Google Scholar 

  • Goel, G., Makkar, H.P.S. and Becker, K., 2008b. Changes in microbial population, methanogenesis and rumen fermentation in response to saponin rich fractions of different plant materials, Journal of Applied Microbiology, 105, 770–777

    Article  PubMed  CAS  Google Scholar 

  • Goel, G., Makkar, H.P.S. and Becker, K., 2009. Inhibition of methanogens by bromochloromethane: effects on microbial community and rumen fermentation using batch and continuous fermentations, British Journal of Nutrition, 101, 1484–1492.

    Article  PubMed  CAS  Google Scholar 

  • Grainger, C., Clarke, T., Auldist, M.J., Beauchemin, K.A., McGinn, S.M. and Waghorn, G.C., 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows, Canadian Journal of Animal Science, 89, 241–251.

    Article  CAS  Google Scholar 

  • Hegarty, R.S., 1999. Mechanisms for competitively reducing ruminal methanogenesis, Australian Journal of Agricultural Research, 50, 1299–1305.

    Article  CAS  Google Scholar 

  • Hess, H.D., Monsalve, L.M., Lascano, C.E., Carulla, J.E., Díaz, T.E. and Kreuzer, M., 2003. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro rumen nitrogen turnover and methanogenesis, Australian Journal of Agricultural Research, 54, 703–717.

    Article  Google Scholar 

  • Hess, H.D., Beuret, R. A., Loetscher, M., Hindrichsen, I.K., Machmüller, A., Carulla, J.E., Lascano, C.E. and Kreuzer, M., 2004. Ruminal fermentation, methanogenesis and nitrogen utilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage, Animal Science, 79, 177–189.

    Google Scholar 

  • Hess, H.D., Tiemann, T.T., Noto, F., Carulla, J.E. and Kreuzer, M., 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock, International Congress Series, 1293, 164–167.

    Article  CAS  Google Scholar 

  • Holtshausen, L., Chaves, A.V., Beauchemin, K.A., McGinn, S.M., McAllister, T.A., Odongo, N.E., Cheeke, P.R. and Benchaar, C., 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows, Journal of Dairy Science, 92, 2809–2821.

    Article  PubMed  CAS  Google Scholar 

  • Hristov, N.A., McAllister, T.A., Van Herk, F.H., Cheng, K.J., Newbold, C.J. and Cheeke, P.R., 1999. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers, Journal of Animal Science, 77, 2554–2563.

    PubMed  CAS  Google Scholar 

  • Hu, W. L., Yue-ming, W.U., Jian-xin, L., Yan-qiu, G. and Jun-an, Y., 2005. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid, Journal of Zhejiang University Science B, 6, 787–792

    PubMed  Google Scholar 

  • IPCC, 2001. In: Houghton, J.T. et al. (Eds.), Climate Change 2001: The Scientific Background, vol. 94. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Jayanegara, A., 2009. Methane reduction effect of polyphenol containing plants, simple phenols and purified tannins in in vitro rumen fermentation system. MSc thesis, University of Hohenheim, Germany.

    Google Scholar 

  • Jayanegara, A., Togtokhbayar, N., Makkar, H.P.S. and Becker, K., 2008. Tannins determined by various methods as predictors of methane reduction potential of plants in an in vitro rumen fermentation system, Animal Feed Science and Technology, 150, 230–237.

    Article  Google Scholar 

  • Jayanegara, A., Makkar, H.P.S. and Becker, K., 2009. Methane reducing properties of polyphenol containing plants simple phenols and purified tannins in in vitro gas production method, FAO-IAEA International Symposium ‘Sustainable Improvement of Animal Production and Health’, 8 to 11 June 2009, Vienna, Austria.

  • Jayanegara,A., Leiber, F. and Kreuzer, M., 2011. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments, Journal of Animal physiology and Animal nutrition, doi:10.1111/j.1439-0396.2011.01172.x

  • Johnson, K.A., and Johnson, D.E., 1995. Methane emissions from cattle, Journal of Animal Science, 73, 2483–2492.

    PubMed  CAS  Google Scholar 

  • Kurihara, M., Magner, T., Hunter, R. A., and McCrabb, G. J., 1999. Methane production and energy partition of cattle in the tropics, British Journal of Nutrition, 81, 227–334.

    PubMed  CAS  Google Scholar 

  • Machmüller, A., Soliva, C. R. and Kreuzer, M., 2003. Effect of coconut oil and defaunation treatment on methanogenesis in sheep, Reproduction Nutrition and Development, 43, 41–55.

    Article  Google Scholar 

  • Makkar H.P.S., 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin rich feeds, Small Ruminant Research, 49, 241–256

    Article  Google Scholar 

  • Makkar, H. P. S., and Becker, K., 1996. Effect of quillaja saponins on in vitro rumen fermentation. In: Saponins Used in Food and Agriculture; Waller, G. R., Yamasaki, Y., Eds.; Plenum Press: New York, 387–394.

    Chapter  Google Scholar 

  • Makkar, H. P. S., Bluemmel,M. and Becker, K., 1995. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen, Journal of food Science and Agriculture, 69, 481–493.

    Article  CAS  Google Scholar 

  • Makkar, H.P.S., Sen, S., Blümmel, M., and Becker, K., 1998. Effects of fractions containing saponins from Yucca schidigera, Quillaja saponaria and Acacia auriculoformis on rumen fermentation. Journal of Agriculture and Food Chemistry 46, 4324–4328

    Article  CAS  Google Scholar 

  • Makkar, H.P. S., Siddhuraju, P. and Becker, K., 2007. Plant Secondary Metabolites. Methods in Molecular Biology 393, Humana Press, Totowa, New Jersey, pp.130.

    Google Scholar 

  • Mao, H., Wang, J., Zhou, Y. and Liu, J., 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs, Animal Feed Science and Technology, 129, 56–62.

    Google Scholar 

  • McSweeney, C.S., Palmer, B., McNeil, D.M., et al., 2001. Microbial interactions with tannins: nutritional consequences for ruminants, Animal Feed Science and Technology, 91, 83–93.

    Article  CAS  Google Scholar 

  • Menke K.H., and Steingass H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid, Animal Research and Development, 28, 7–55

    Google Scholar 

  • Muetzel, S., Hoffmann, E.M., and Becker, K., 2003. Supplementation of barley straw with Sesbania pachycarpa leaves in vitro: effects on fermentation variables and rumen microbial population structure quantified by ribosomal RNA-targeted probes, British Journal of Nutrition, 89, 445–453

    Article  PubMed  CAS  Google Scholar 

  • Nollet, L., Mbanzamihigo, L., Demeyer, D. and Verstraete, W., 1998. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80, Animal Feed Science and Technology, 71, 49–66.

    Article  CAS  Google Scholar 

  • Patra, A. K., Kamra, D. N., Bhar, R., Kumar, R. and Aggarwal, N., 2011. Effect of Terminalia chebula and Allium sativum on in vivo methane emission by sheep, Journal of Animal physiology and Animal nutrition, 95, 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Pen, B., Takaura, K., and Yamaguchi, S., 2007. Effects of Yucca shidigera and Quillaja saponaria with or without β 1–4 galacto-oligosaccharides on ruminal fermentation, methane production and nitrogen utilization in sheep, Animal Feed Science and Technology,138,75–88

    Article  CAS  Google Scholar 

  • Puchala, R., Min, B.R., Goetsch, A.L., and Sahlu, T., 2005. The effect of a condensed tannin–containing forage on methane emission in goats, Journal of Animal Science, 83, 182–186.

    PubMed  CAS  Google Scholar 

  • Santoso, B., Mwenya, B., Sar, C., Gamo, Y., Kobayashi, T., Morikawa, R., Kimura, K.., Mizukoshi, H., Takahashi, J., 2004. Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep, Livestock Production Science 91, 209–217

    Article  Google Scholar 

  • Sliwinski, B.J., Kreuzer, M., Wettstein, H.R., and Machmuller, A., 2002. Rumen fermentation and nitrogen balance of lambs fed diets containing plantextracts rich in tannins and saponins and associated emissions of nitrogen and methane, Archieves of Animal Nutrition, 56, 379–392.

    CAS  Google Scholar 

  • Tavendale, M.H., Meagher, L.P., Pacheco, D., Walker, N.,. Attwood, G. T. and Sivakumaran, S., 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis, Animal Feed Science and Technology, 123–124, 403–419

    Article  Google Scholar 

  • Teferedegne, B., McIntosh, F., Osuji, P.O., Odenyo, A., Wallace, R. J., and Newbold, C. J., 1999. Influence of foliage from different accessions of the subtropical leguminous tree, Sesbania sesban on rumen protozoa in Ethiopian and Scottish sheep, Animal Feed Science and Technology, 78:11–20

    Article  Google Scholar 

  • Tiemann T. T., Lascano C. E., Wettstein H-R., Mayer, A. C.; Kreuzer, M.; Hess, H. D., 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2, 790–799

    Article  CAS  Google Scholar 

  • Vinogradov E., Egbosimba E.E., Perry M.B., Lam, J. S., and Forsberg, C. W. , 2001. Structural analysis of the carbohydrate components of the outer membrane of the lipopolysaccharide-lacking cellulolytic ruminal bacterium Fibrobacter succinogenes S85, European Journal of Biochemistry, 268, 3566–3576.

    Article  PubMed  CAS  Google Scholar 

  • Waghorn G.C., and Woodward S.L., 2006. Ruminant contributions to methane and global warming—a New Zealand perspective, In: J.S. Bhatti, R. Lal, M.J. Apps and M.A. Price, Editors, Climate Change and Managed Ecosystems, Taylor and Francis, Boca Raton, pp. 233–260

    Google Scholar 

  • Wang Y.X., McAllister T.A., Newbold C.J., Cheeke, P.R., Cheng, K.J., 1998. Effect of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC), Animal Feed Science and Technology 74,143–153

    Article  CAS  Google Scholar 

  • Wang, Y., McAllister T.A., Yanke L.J., Cheeke, P.R., 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes, Journal of Applied Microbiology, 88, 887–896.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. J., Wang S.P., and Zhouc H., 2009. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep, Animal Feed Science and Technology, 148, 157–166

    Article  CAS  Google Scholar 

  • Wina E., Muetzel S., Hoffman E., and Becker, K., 2004. Effects of saponin containing methanol extract of Sapindus rarak on ruminal flora and fermentation characteristics in vivo, Reproduction Nutrition and Development, 44, S41

    Google Scholar 

  • Woodward, S.L., Waghorn, G.C., Ulyatt, M.J., and Lassey, K.R., 2001. Early indication that feeding lotus will reduce methane emission from ruminants. Proceedings of New Zealand Society of Animal Production, 61, 23–26.

    Google Scholar 

  • Woodward, S. L., Waghorn, G.C., and Laboyrie, P.G., 2004. Condensed tannins in birdsfoot trefoil (Lotus corniculatus) reduce methane emissions from dairy cows. Proceedings of New Zealand Society of Animal Production, 64,160–164

    Google Scholar 

  • Yuan, Z.P., Zhang C.M., and Zhou L., 2007. Inhibition of methanogenesis by tea saponin and tea saponin plus disodium fumarate in sheep, Journal of Animal Feed Science, 16, 560–565

    Google Scholar 

  • Zhou, Y.Y., Mao, H. L., Jiang, F., Wang, J. K., Liu, J.X. and McSweeney, C. S., 2011. Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep, Animal Feed Science and Technology, 166, 93–100

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the International Atomic Energy Agency, Vienna, Austria for partly financing the work under Technical Contract 15363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder P. S. Makkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, G., Makkar, H.P.S. Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Prod 44, 729–739 (2012). https://doi.org/10.1007/s11250-011-9966-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-011-9966-2

Keywords

Navigation