Skip to main content
Log in

Scratch Characteristics of ZnMgO Epilayers

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Zn0.75Mg0.25O films were grown via metal organic vapor phase epitaxy on an M-plane sapphire substrate. We used nanoscratch tests to study the abrasive plow of the films; comparable cases of critical pileup were obtained on both sides of each scratch when the ramped load increased from 0 to 250 μN. The film showed a crack in the bulge edge between the groove at ramped loads of 1000 μN as well as full plastic deformation. The values of μ were 0.14, 0.33, 0.43, and 0.48 for the ramped loads of 250 μN and 0.22, 0.26, 0.28, and 0.33 for the ramped load of 1000 μN. We found that cracking dominated in the case of Zn0.75Mg0.25O films during plowing. Lower values of the coefficient of friction and shallower penetration depths were observed at RT, while higher values were observed in the annealed samples. It is suggested that higher growth temperatures induce lower bonding forces and reduce the shear resistances of Zn0.75Mg0.25O films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reynolds, D.C., Look, D.C., Jogai, B., Litton, C.W., Cantwell, G., Harsch, W.C.: Phys. Rev. B 60, 2340 (1999)

    Article  Google Scholar 

  2. Mather, P.G., Read, J.C., Buhrman, R.A.: Phys. Rev. B 73, 205412 (2006)

    Article  Google Scholar 

  3. Shan, F.K., Kim, B.I., Liu, G.X., Liu, Z.F., Sohn, J.Y., Lee, W.J., Shin, B.C., Yu, Y.S.: J. Appl. Phys. 95, 4772–4776 (2004)

    Article  Google Scholar 

  4. Lin, H.J., Lin, D.Y., Wu, J.S., Yang, C.S., Chou, W.C., Lo, W.H., Wang, J.S.: Jpn. J. Appl. Phys. 48, 04C1221–04C1225 (2009)

    Google Scholar 

  5. Chen, J., Shen, W.Z., Chen, N.B., Qiu, D.J., Wu, H.Z.: J. Phys. Condens. Matter 15, L475 (2003)

    Article  Google Scholar 

  6. Lin, L.Y., Jeong, M.C., Kim, D.E., Myoung, J.M.: Surf. Coat. Tech. 201, 2547–2552 (2006)

    Article  Google Scholar 

  7. Zhao, S., Zhou, Y., Liu, Y., Zhao, K., Wang, S., Xiang, W., Liu, Z., Han, P., Zhang, Z., Chen, Z., Lu, H., Jin, K., Cheng, B., Yang, G.: Appl. Sur. Sci. 253, 726–729 (2006)

    Article  Google Scholar 

  8. Wang, Y.X., Ding, X., Cheng, Y., Zhang, Y.J., Yang, L.L., Liu, H.L., Fan, H.G., Liu, Y., Yang, J.H.: Cryst. Res. Technol. 44, 517–520 (2009)

    Article  Google Scholar 

  9. Zhang, Y., Zhang, H., Li, X., Dong, L., Zhong, X.: Nanotechnology 21, 095606 (2010)

    Article  Google Scholar 

  10. Sohn, L.L., Willet, R.L.: Appl. Phys. Lett. 67, 1552–1554 (1995)

    Article  Google Scholar 

  11. Grillo, S.E., Ducarroir, M., Nadal, M., Tournié, E., Faurie, J.P.: J. Phys. D Appl. Phys. 35, 3015–3020 (2002)

    Article  Google Scholar 

  12. Grillo, S.E., Glénat, H., Tite, T., Pages, O., Maksimov, O., Tamargo, M.C.: Appl. Phys. Lett. 93, 081901–081903 (2008)

    Article  Google Scholar 

  13. Chang, S.Y., Chang, T.Q., Lee, Y.S.: J. Electrochem. Soc. 10, C657–C663 (2005)

    Article  Google Scholar 

  14. Lin, M.H., Wen, H.C., Jeng, Y.R., Chou, C.P.: Nanoscale Res. Lett. 5, 1812–1816 (2010)

    Article  Google Scholar 

  15. Wang, J.S., Yang, C.S., Liou, M.J., Wu, C.X., Chiu, K.C., Chou, W.C.: J. Cryst. Growth 310, 4503–4506 (2008)

    Article  Google Scholar 

  16. Morlyama, T., Fujita, S.: Jpn. J. Appl. Phys. 44, 7919 (2005)

    Article  Google Scholar 

  17. Mosca, D.H., Mattoso, N., Lepienski, C.M., Veiga, W., Mazzaro, I., Etgens, V.H., Eddrief, M.: J. Appl. Phys. 91, 140 (2002)

    Article  Google Scholar 

  18. Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., Munroe, P.: Appl. Phys. Lett. 78, 3235 (2001)

    Article  Google Scholar 

  19. Deepa, M., Bahadur, N., Srivastava, A.K., Chaganti, P., Sood, K.N.: J. Phys. Chem. Solids 70, 291–297 (2009)

    Article  Google Scholar 

  20. Wen, H.C., Yang, C.S., Chou, W.C.: Appl. Sur. Sci. 256, 2128–2131 (2010)

    Article  Google Scholar 

  21. Gleiter, H.: Prog. Mater. Sci. 33, 223–315 (1989)

    Article  Google Scholar 

  22. Karch, J., Birringer, R., Gleiter, H.: Nature 330, 556–558 (1987)

    Article  Google Scholar 

  23. Yip, S.: Nature 391, 532–533 (1998)

    Article  Google Scholar 

  24. Neih, T.G., Wadsworth, J.: Scr. Metall. Mater. 25, 955–958 (1991)

    Article  Google Scholar 

  25. Segnit, E.R., Holland, A.E.: J. Am. Ceram. Soc. 48, 412 (1965)

    Article  Google Scholar 

  26. Wen, H.C., Chou, W.C., Yau, W.H., Fan, W.C., Lee, L., Jian, K.F.: J. Alloys Compd. 625, 52–56 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Council of Taiwan under Contract (102-2119-M-002-004 and MOST 103-2119-M-009-002). The author thanks the Center for advanced instrumentation (Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.) and for assistance with the CL/SEM/EDS measurements (JEOL JSM-7001F field-emission scanning electron microscope). In addition, the samples were supported by professor Tun-Yuan Chiang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Chiang Wen or Wu-Ching Chou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, HC., Chou, WC., Chiang, TY. et al. Scratch Characteristics of ZnMgO Epilayers. Tribol Lett 58, 26 (2015). https://doi.org/10.1007/s11249-015-0499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0499-0

Keywords

Navigation