Skip to main content
Log in

Observations of Stick-Slip Friction in Velcro®

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Friction, and in particular stick-slip friction, occurs on every length scale, from the movement of atomic force microscope tips at the nanoscale to the movement of tectonic plates of the Earth’s crust. Even with this ubiquity, there still appears to be outstanding fundamental questions, especially on the way that frictional motion varies generally with the mechanical parameters of a system. In this study, the frictional dynamics of the hook-and-loop system of Velcro® in shear is explored by varying the typical parameters of driving velocity, applied load, and apparent contact area. It is demonstrated that in Velcro® both the maximum static frictional force and the average kinetic frictional force vary linearly with apparent contact area (hook number), and moreover, in the kinetic regime, stick-slip dynamics are evident. Surprisingly, the average kinetic friction force is independent of velocity over nearly two-and-a-half orders of magnitude (~2 × 10−4 to ~6 × 10−2 m/s). The frictional force varies as a power law on the applied load with an exponent of 0.28 and 0.24 for the maximum static and kinetic frictional forces, respectively. Furthermore, the evolution of stick-slip friction to more smooth sliding, as controlled by contact area, is demonstrated by both a decrease in the spread of the kinetic friction and the spread of the fluctuations of the average kinetic friction when normalized to the average kinetic friction; these decreases follow power-law behaviors with respect to the increasing contact area with exponents of approximately −0.3 and −0.8, respectively. Lastly, we note that the coefficients of friction μ s and μ k are not constant with applied load but rather decrease monotonically with power-law behavior with an exponent of nearly −0.8. Phenomenologically, this system exhibits interesting physics whereby in some instances it follows classical Amontons–Coulomb (AC) behavior and in others lies in stark contrast and hopefully will assist in the understanding of the friction behavior in dry surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dowson, D.: History of Tribology. Longman, London (1979)

    Google Scholar 

  2. Amontons, G.: De la résistance causée dans les machines. Mem. Acad. R. Sci. 206–226 (1699)

  3. Coulomb, C.A.: Théorie des machines simples. Mém. Math. Phys. Acad. Sci. 10, 161–331 (1699)

    Google Scholar 

  4. Bowden, F.P., Tabor, D.: Friction and Lubrication of Solids, vol. 1. Clarendon, Oxford (1950)

    Google Scholar 

  5. Johnson, K.L.: Continuum mechanics modeling of adhesion and friction. Langmuir 12, 4510–4513 (1996)

    Article  Google Scholar 

  6. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

    Article  Google Scholar 

  7. Krim, J.: Friction at the Atomic Scale, pp. 74–80. Scientific American, USA (1996)

    Google Scholar 

  8. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Heidelberg (2000)

    Book  Google Scholar 

  9. Tanaka, Y., Abe, H., Kurokawa, T., Furukawa, H., Gong, J.P.: First observations of stick-slip instability in tearing of poly(vinyl alcohol) gel sheets. Macromolecules 42, 5425–5426 (2009)

    Article  Google Scholar 

  10. Demirel, A.L., Granick, S.: Friction fluctuations and friction memory in stick-slip motion. Phys. Rev. Lett. 77, 4330–4333 (1996)

    Article  Google Scholar 

  11. Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’ law for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001)

    Article  Google Scholar 

  12. Braun, O.M., Röder, J.: Transition from stick-slip to smooth sliding: an earthquake model. Phys. Rev. Lett. 88, 096102 (2002)

    Article  Google Scholar 

  13. Gourdon, D., Israelachvili, J.N.: Transitions between smooth and complex stick-slip sliding of surfaces. Phys. Rev. E 68, 021602–0216010 (2003)

  14. Filippov, A.E., Klafter, J., Urbakh, M.: Friction through dynamical formation and rupture of molecular bonds. Phys. Rev. Lett. 92, 135503 (2004)

    Article  Google Scholar 

  15. Ringlein, J., Robbins, M.O.: Understanding and illustrating the atomic origins of friction. Am. J. Phys. 72, 884–891 (2004)

    Article  Google Scholar 

  16. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.N.: The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  Google Scholar 

  17. Rubinstein, S.M., Cohen, G., Fineberg, J.: Contact area measurements revel loading-history dependence of static friction. Phys. Rev. Lett. 96, 256103 (2006)

  18. Rubinstein, S.M., Cohen, G., Fineberg, J.: Dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)

    Article  Google Scholar 

  19. Braun, O.M., Peyrard, M.: Modeling friction on a mesoscale: master equation for the earthquake model. Phys. Rev. Lett. 100, 125501 (2008)

    Article  Google Scholar 

  20. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  Google Scholar 

  21. Rubinstein, S.M., Cohen, G., Fineberg, J.: Visualizing stick-slip: experimental observations of processes governing the nucleation of frictional sliding. J. Phys. D Appl. Phys. 42, 214016–214032 (2009)

    Article  Google Scholar 

  22. Ben-David, O., Rubinstein, S.M., Fineberg, J.: Slip–stick and the evolution of frictional strength. Nature 463, 76–79 (2010)

    Article  Google Scholar 

  23. Ramakrishna, S., Nalam, P.C., Clasohm, L.Y., Spencer, N.D.: Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics. Langmuir 29, 175–182 (2013)

    Article  Google Scholar 

  24. Zappone, B., Rosenberg, K.J., Israelachvili, J.: Role of nanometer roughness on the adhesion and friction of a rough polymer surface and a molecularly smooth mica surface. Tribol. Lett. 26, 191–201 (2007)

    Article  Google Scholar 

  25. Grierson, D.S., Flater, E.E., Carpick, R.W.: Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhesion Sci. Technol. 19, 1–311 (2005)

    Article  Google Scholar 

  26. Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear, and lubrication at the atomic scale. Nature 374, 607–616 (1995)

    Article  Google Scholar 

  27. Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ Law: from molecular to macroscopic scale. J. Phys. Chem. B 108, 3410–3425 (2004)

    Article  Google Scholar 

  28. Ben-David, O., Fineberg, J.: Static friction is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)

    Article  Google Scholar 

  29. Bowden, F.P., Tabor, D.: The friction and lubrication of solids, vol. 2. Clarendon, Oxford (1954)

    Google Scholar 

  30. William, J.A., Davies, S.G., Frazer, S.: The peeling of flexible probabilistic fasteners. Tribol. Lett. 26, 213–222 (2007)

    Article  Google Scholar 

  31. Pugno, N.M.: The theory of multiple peeling. Int. J. Fract. 171, 185–193 (2011)

    Article  Google Scholar 

  32. Feder, H.J.S., Feder, J.: Self organized criticality in a stick-slip process. Phys. Rev. Lett. 67, 283 (1991)

    Article  Google Scholar 

  33. Meyer, E., Overney, R.M., Dransfeld, K., Gyalog, T.: Nanoscience: friction and rheology on the nanometer scale. World Scientific, Singapore (1998)

    Book  Google Scholar 

  34. Pugno, N.M.: Velcro® nonlinear mechanics. Appl. Phys. Lett. 90, 121918 (2007)

    Article  Google Scholar 

  35. Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)

    Article  Google Scholar 

  36. Jones, R.: From single particle AFM studies of adhesion and friction to bulk flow: forging the links. Granular Matter 4, 191–204 (2003)

    Article  Google Scholar 

  37. Riedo, E., Palaci, I., Boragno, C., Brune, H.: The 2/3 power-law dependence of capillary force on normal load in nanoscopic friction. J. Phys. Chem. B. 108, 5324–5328 (2004)

Download references

Acknowledgments

The authors wish to thank the John P. McNulty Foundation, The Howard Hughes Medical Institute, Sigma Xi Research Society, and The Saint Joseph University Summer Scholars Program for financial support. The authors also wish to thank Dr. Piotr Habdas for invaluable discussions and suggestions and Ryan Stuhl for computational assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Angiolillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 995 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariani, L.M., Esposito, C.M. & Angiolillo, P.J. Observations of Stick-Slip Friction in Velcro® . Tribol Lett 56, 189–196 (2014). https://doi.org/10.1007/s11249-014-0397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0397-x

Keywords

Navigation