Skip to main content
Log in

Impact of Oil-in-Water Emulsion Composition and Preparation Method on Emulsion Physical Properties and Friction Behaviors

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Emulsions have been used as a model food system for many studies on food behavior, including tribological studies. Several studies have examined the effect of fat content and emulsifier on emulsion friction behavior; however, other emulsion parameters such as ionic strength, pH, and homogenization pressure have received little attention in the literature. Additionally, emulsion friction measurements are generally compared to sensory data rather than physical property data. Thus, the objective of this study was to investigate the effect of various emulsion parameters on emulsion physical properties and rheological and friction behavior. Emulsion salt content, pH, and homogenization pressure all affected friction behavior, with specific effects dependent on the emulsifying protein. All emulsions showed reduced friction coefficient with increased fat content. Emulsion rheological behavior was not strongly impacted by changes in the emulsion parameters. Changing emulsion pH had the strongest effect on emulsion physical properties. The results of this study suggest that tribology may be used to develop a “fingerprint” for emulsions prepared using different parameters, allowing improved differentiation of these emulsions compared to traditional rheometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dresselhuis, D.M., de Hoog, E.H.A., Cohen Stuart, M.A., van Aken, G.A.: Application of oral tissue in tribological measurements in an emulsion perception context. Food Hydrocoll. 22, 323–335 (2008)

    Article  Google Scholar 

  2. Bellamy, M., Godinot, N., Mischler, S., Martin, N., Hartmann, C.: Influence of emulsion composition on lubrication capacity and texture perception. Int. J. Food Sci. Technol. 44, 1939–1949 (2009)

    Article  Google Scholar 

  3. Malone, M.E., Appelqvist, I.A.M., Norton, I.T.: Oral behaviour of food hydrocolloids and emulsions. Part 1. Lubrication and deposition considerations. 6th International Hydrocolloids Conference—part 2, vol. 17, pp. 763–773 (2003)

  4. Dresselhuis, D., Klok, H., Stuart, M., de Vries, R., van Aken, G., de Hoog, E.: Tribology of o/w emulsions under mouth-like conditions: determinants of friction. Food Biophys. 2, 158–171 (2007)

    Article  Google Scholar 

  5. Chojnicka-Paszun, A., de Jongh, H.H.J., de Kruif, C.G.: Sensory perception and lubrication properties of milk: influence of fat content. 7th NIZO Dairy Conference, vol. 26, pp. 15–22 (2012)

  6. Terpstra, M.E.J., Jellema, R.H., Janssen, A.M., de Wijk, R.A., Prinz, J.F., van der Linden, E.: Prediction of texture perception of mayonnaises from rheological and novel instrumental measurements. J. Texture Stud. 40, 82–108 (2009)

    Article  Google Scholar 

  7. Meyer, D., Vermulst, J., Tromp, R.H., De Hoog, E.H.A.: The effect of inulin on tribology and sensory profiles of skimmed milk. J. Texture Stud. 42, 387–393 (2011)

    Article  Google Scholar 

  8. de Wijk, R.A., Prinz, J.F., Janssen, A.M.: Explaining perceived oral texture of starch-based custard desserts from standard and novel instrumental tests. Food Hydrocoll. 20, 24–34 (2006)

    Article  Google Scholar 

  9. Butt, H.J., Graf, K., Kappl, M.: Friction, lubrication, and wear. Physics and Chemistry of Interfaces, pp. 223–245. Wiley, New Jersey (2004)

  10. Bongaerts, J.H.H., Fourtouni, K., Stokes, J.R. Soft-tribology: lubrication in a compliant PDMS–PDMS contact. Tribology at the Interface: Proceedings of the 33rd Leeds-Lyon Symposium on Tribology (Leeds, 2006), vol. 40, pp. 1531–1542 (2007)

  11. Selway, N., Stokes, J.R.: Insights into the dynamics of oral lubrication and mouthfeel using soft tribology: Differentiating semi-fluid foods with similar rheology. Food Res. Int. 54, 423–431 (2013)

    Article  Google Scholar 

  12. de Vicente, J., Stokes, J.R., Spikes, H.A.: The frictional properties of Newtonian fluids in rolling–sliding soft-EHL contact. Tribol. Lett. 20, 273–286 (2005)

    Article  Google Scholar 

  13. Stokes, J.R., Macakova, L., Chojnicka-Paszun, A., de Kruif, C.G., de Jongh, H.H.J.: Lubrication, adsorption, and rheology of aqueous polysaccharide solutions. Langmuir 27, 3474–3484 (2011)

    Article  Google Scholar 

  14. Chojnicka, A., Sala, G., de Kruif, C.G., van de Velde, F.: The interactions between oil droplets and gel matrix affect the lubrication properties of sheared emulsion-filled gels. Food Hydrocoll. 23, 1038–1046 (2009)

    Article  Google Scholar 

  15. Bongaerts, J., Rossetti, D., Stokes, J.: The lubricating properties of human whole saliva. Tribol. Lett. 27, 277–287 (2007)

    Article  Google Scholar 

  16. de Vicente, J., Stokes, J.R., Spikes, H.A.: Rolling and sliding friction in compliant, lubricated contact. J. Eng. Tribol. 220, 55–63 (2006)

    Google Scholar 

  17. de Hoog, E.H.A., Prinz, J.F., Huntjens, L., Dresselhuis, D.M., Van Aken, G.A.: Lubrication of oral surfaces by food emulsions: the importance of surface characteristics. J. Food Sci. 71, E337–E341 (2006)

    Article  Google Scholar 

  18. Lui, S., Luo, J., Li, G., Zhang, C., Lu, X.: Effect of surface physicochemical properties on the lubricating properties of water film. Appl. Surf. Sci. 254, 7137–7142 (2008)

    Article  Google Scholar 

  19. Heyer, P., Lauger, J.: A flexible platform for tribological measurements on a rheometer. Ann. Trans. Nordic Rheol. Soc. 17:np (2009)

  20. Çakır, E., Foegeding, E.A.: Combining protein micro-phase separation and protein–polysaccharide segregative phase separation to produce gel structures. Food Hydrocoll. 25, 1538–1546 (2011)

    Article  Google Scholar 

  21. de Vicente, J., Stokes, J.R., Spikes, H.A.: Lubrication properties of non-adsorbing polymer solutions in soft elastohydrodynamic (EHD) contacts. Tribol. Int. 38, 515–526 (2005)

    Article  Google Scholar 

  22. de Vicente, J., Stokes, J.R., Spikes, H.A.: Soft lubrication of model hydrocolloids. Part Spec. Issue WCFS Food Summit 20, 483–491 (2006)

    Google Scholar 

  23. Joyner, H.S., Pernell, C.R., Daubert, C.R.: Impact of parameter settings on normal force and gap height during tribological measurements. J. Food Eng. 137, 51–63 (2014)

  24. Kulmyrzaev, A., Chanamai, R., McClements, D.J.: Influence of pH and CaCl2 on the stability of dilute whey protein stabilized emulsions. Food Res. Int. 33, 15–20 (2000)

    Article  Google Scholar 

  25. Demetriades, K., Coupland, J.N., McClements, D.J.: Physical properties of whey protein stabilized emulsions as related to pH and NaCl. J. Food Sci. 62, 342–347 (1997)

    Article  Google Scholar 

  26. Zhang, Z., Dalgleish, D.G., Goff, H.D.: Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Colloids Surf. B 34, 113–121 (2004)

    Article  Google Scholar 

  27. Hunt, J.A., Dalgleish, D.G.: Heat stability of oil-in-water emulsions containing milk proteins: effect of ionic strength and pH. J. Food Sci. 60, 1120–1123 (1995)

    Article  Google Scholar 

  28. Dickinson, E.: Properties of emulsions stabilized with milk proteins: overview of some recent developments. J. Dairy Sci. 80, 2607–2619 (1997)

    Article  Google Scholar 

  29. Singh, H.: Protein interactions and functionality of milk protein products. In: Corredig, M. (ed.) Dairy-Derived Ingredients-Food and Nutraceutical Uses, p. 690. CRC Press, Boca Raton (2009)

  30. Wohlfarth, C.: Surface tension of water. Supplement to IV/16, pp. 16–21. Springer, New York (2008)

  31. Esteban, B., Riba, J.-B., Baquero, G., Puig, R., Rius, A.: Characterization of the surface tension of vegetable oils to be used as fuel in diesel engines. Fuel 102, 231–238 (2012)

    Article  Google Scholar 

  32. Bos, M.A., van Vliet, T.: Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv. Colloid Interface Sci. 91, 437–471 (2001)

    Article  Google Scholar 

  33. Arakawa, T., Timasheff, S.N.: Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry 23, 5912–5923 (1984)

    Article  Google Scholar 

  34. Walstra, P.: Physical Chemistry of Foods. Marcel Dekker Inc, New York, NY (2003)

    Google Scholar 

  35. Carr, A.J., Munro, P.A., Campanella, O.H.: Effect of added monovalent or divalent cations on the rheology of sodium caseinate solutions. Int. Dairy J. 12, 487–492 (2002)

    Article  Google Scholar 

  36. Dickinson, E., Semenova, M.G., Antipova, A.S.: Salt stability of casein emulsions. Food Hydrocoll. 12, 227–235 (1998)

    Article  Google Scholar 

  37. Mizuno, R., Lucey, J.A.: Effects of emulsifying salts on the turbidity and calcium-phosphate–protein interactions in casein micelles. J. Dairy Sci. 88, 3070–3078 (2005)

    Article  Google Scholar 

  38. Dickinson, E., Davies, E.: Influence of ionic calcium on stability of sodium caseinate emulsions. Colloids Surf. B 12, 203–212 (1999)

    Article  Google Scholar 

  39. Keowmaneechai, E., McClements, D.J.: Effect of CaCl2 and KCl on physiochemical properties of model nutritional beverages based on whey protein stabilized oil-in-water emulsions. J. Food Sci. 67, 665–671 (2002)

    Article  Google Scholar 

  40. Kulmyrzaev, A., Sivestre, M.P.C., McClements, D.J.: Rheology and stability of whey protein stabilized emulsions with high CaCl2 concentrations. Food Res. Int. 33, 21–25 (2000)

    Article  Google Scholar 

  41. Radford, S.J., Dickinson, E., Golding, M.: Stability and rheology of emulsions containing sodium caseinate: combined effects of ionic calcium and alcohol. J. Colloid Interface Sci. 274, 673–686 (2004)

    Article  Google Scholar 

  42. Lucey, J.A., Singh, H.: Formation and physical properties of acid milk gels: a review. Food Res. Int. 30, 529–542 (1997)

    Article  Google Scholar 

  43. Lucey, J.A., Munro, P.A., Singh, H.: Effects of heat treatment and whey protein addition on the rheological properties and structure of acid skim milk gels. Int. Dairy J. 9, 275–279 (1999)

    Article  Google Scholar 

  44. Lucey, J.A.: Cultured dairy products: an overview of their gelation and texture properties. Int. J. Dairy Technol. 57, 77–84 (2004)

    Article  Google Scholar 

  45. Vingerhoeds, M.H., Blijdenstein, T.B.J., Zoet, F.D., van Aken, G.A.: Emulsion flocculation induced by saliva and mucin. Food Hydrocolloids 19, 915–922 (2005)

    Article  Google Scholar 

  46. Stokes, J.R.: ‘Oral’ Tribology. In: Chen, J., Engelen, L. (eds.) Food Oral Processing: Fundamentals of Eating and Sensory Perception, pp. 265–287. Wiley, New Jersey (2012)

    Chapter  Google Scholar 

  47. de Wijk, R.A., Prinz, J.F.: The role of friction in perceived oral texture. Food Qual. Prefer. 16, 121–129 (2005)

    Article  Google Scholar 

  48. Giasson, S., Israelachvili, J., Yoshizawa, H.: Thin film morphology and tribology study of mayonnaise. J. Food Sci. 62, 640–652 (1997)

    Article  Google Scholar 

  49. Dresselhuis, D.M., de Hoog, E.H.A., Cohen Stuart, M.A., Vingerhoeds, M.H., van Aken, G.A.: The occurrence of in-mouth coalescence of emulsion droplets in relation to perception of fat. Food Hydrocoll. 22, 1170–1183 (2008)

    Article  Google Scholar 

  50. Krzeminski, A., Wohlhüter, S., Heyer, P., Utz, J., Hinrichs, J.: Measurement of lubricating properties in a tribosystem with different surface roughness. 7th NIZO Dairy Conf. 26, 23–30 (2012)

  51. Myant, C., Spikes, H.A., Stokes, J.R.: Influence of load and elastic properties on the rolling and sliding friction of lubricated compliant contacts. Tribol. Int. 43, 55–63 (2010)

    Article  Google Scholar 

  52. Ranc, H., Servais, C., Chauvy, P., Debaud, S., Mischler, S.: Effect of surface structure on frictional behaviour of a tongue/palate tribological system 39, 1518–1526 (2006)

    Google Scholar 

  53. de Wijk, R.A., Prinz, J.F.: Mechanisms underlying the role of friction in oral texture. J. Texture Stud. 37, 413–427 (2006)

    Article  Google Scholar 

  54. Myant, C., Fowell, M., Spikes, H.A., Stokes, J.R.: An investigation of lubricant film thickness in sliding compliant contacts. Tribol. Trans. 53, 684–694 (2010)

    Article  Google Scholar 

  55. van Aken, G.A., Vingerhoeds, M.H., de Hoog, E.H.A.: Colloidal behavior of food emulsions under oral conditions. In: Dickinson, E. (ed.) Food Colloids: Interactions, Microstructure, and Processing, pp. 497. Royal Society of Chemistry, London (2005)

Download references

Acknowledgments

Funding for this work was provided by Dairy Management, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen S. Joyner.

Appendix

Appendix

See Tables 4, 5, 6.

Table 4 Particle size and surface characteristic data
Table 5 Correlations among emulsion physical properties
Table 6 Correlations among sliding speeds used in tribological testing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joyner, H.S., Pernell, C.W. & Daubert, C.R. Impact of Oil-in-Water Emulsion Composition and Preparation Method on Emulsion Physical Properties and Friction Behaviors. Tribol Lett 56, 143–160 (2014). https://doi.org/10.1007/s11249-014-0393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0393-1

Keywords

Navigation