Skip to main content
Log in

Rolling Friction: Comparison of Analytical Theory with Exact Numerical Results

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We study the contact mechanics of a smooth hard cylinder rolling on a flat surface of a linear viscoelastic solid. Using the measured viscoelastic modulus of unfilled and filled (with carbon black) nitrile rubber, we compare numerically exact results for the rolling friction with the prediction of a simple analytical theory. For the unfilled rubber, the two theories agree perfectly while some small difference exists for the filled rubber. The rolling friction coefficient depends nonlinearly on the normal load and the rolling velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It can be easily shown that the discrete formulation of the viscoelastic line contact kernel presents an analytical formulation as it occurs for the elastic case. This largely simplifies the viscoelastic integration.

References

  1. Persson, B.: Sliding Friction: Physical Principles and Applications, 2nd edn. Springer, Heidelberg (2000)

    Book  Google Scholar 

  2. Grosch, K.: The relation between the friction and visco-elastic properties of rubber. Proc. R. Soc. Lond. A Mat. 274, 21–39 (1963)

    Article  Google Scholar 

  3. Persson, B.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 22, 325107 (2010)

    Google Scholar 

  4. Persson, B.: Rubber friction: role of the flash temperature. J. Phys.: Condens. Matter 18, 7789–7823 (2006)

    Google Scholar 

  5. Persson, B., Albohr, O., Tartaglino, U., Volokitin, A., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys.: Condens. Matter 17, R1–R62 (2005)

    Google Scholar 

  6. Heinrich, G., Klüppel, M., Vilgis, T.: Evaluation of self-affine surfaces and their implication for frictional dynamics as illustrated with a Rouse material. Comput Theory Polym S 10, 53–61 (2000)

    Article  Google Scholar 

  7. Heinrich, G., Klüppel, M.: Rubber friction, tread deformation and tire traction. Wear 265, 1052–1060 (2008)

    Article  Google Scholar 

  8. Persson, B., Volokitin, A.: Rubber friction on smooth surfaces. Eur. Phys. J. E 21, 69–80 (2006)

    Article  Google Scholar 

  9. Carbone, G., Lorenz, B., Persson, B., Wohlers, A.: Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. Eur. Phys. J. E 29, 275–284 (2009)

    Article  Google Scholar 

  10. Persson, B.: On the theory of rubber friction. Surf. Sci. 401, 445–454 (1998)

    Article  Google Scholar 

  11. Le Gal, A., Yang, X., Klüppel, M.: Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis. J. Chem. Phys. 123, 014704 (2005)

    Google Scholar 

  12. Persson, B.: Theory of powdery rubber wear. J. Phys.: Condens. Matter 21, 485001 (2009)

    Google Scholar 

  13. Mofidi, M., Prakash, B., Persson, B., Albohr, O.: Rubber friction on (apparently) smooth lubricated surfaces. J. Phys. Condens. Mat. 20, 085223 (2008)

    Google Scholar 

  14. Persson, B., Albohr, O., Creton, C., Peveri, V.: Contact area between a viscoelastic solid and a hard, randomly rough, substrate. J. Chem. Phys. 120, 8779–8793 (2004)

    Article  Google Scholar 

  15. Greenwood, J., Johnson, K., Choi, S.-H., Chaudhury, M.: Investigation of adhesion hysteresis between rubber and glass using a pendulum. J. Phys. D: Appl. Phys. 42, 035301 (2009)

    Article  Google Scholar 

  16. She, H., Malotky, D., Chaudhury, M.: Estimation of Adhesion Hysteresis at Polymer/Oxide Interfaces Using Rolling Contact Mechanics. Langmuir 14, 3090–3100 (1998)

    Article  Google Scholar 

  17. Greenwood, J., Tabor, D.: The friction of hard sliders on lubricated rubber: the importance of deformation losses. J. Phys. Soc. 71, 989 (1958)

    Article  Google Scholar 

  18. Greenwood, J.A., Minshall, H., Tabor, D.: Hysteresis losses in rolling and sliding friction. Proc R. Soc. Lond. A Mat. 259, 480–507 (1961)

    Article  Google Scholar 

  19. Tabor, D.: The rolling and skidding of automobile tyres. Phys. Rev. Spec. Top-Ph 29, 301 (1994)

    Google Scholar 

  20. Felhos, D., Xu, D., Schlarb, A., Vradi, K., Goda, T.: Viscoelastic characterization of an EPDM rubber and finite element simulation of its dry rolling friction. Express Polym. Lett. 2, 157–164 (2008)

    Article  Google Scholar 

  21. Hunter, S.: The rolling contact of a rigid cylinder With a viscoelastic half space. J. Appl. Mech. 28, 611–617 (1961)

    Article  Google Scholar 

  22. Goryacheva, I.G.: Contact problem of rolling of a viscoelastic cylinder on a base of the same material. J. Appl. Math. Mech. 37 877–885 (1973)

    Google Scholar 

  23. Panek, C., Kalker, J.: Three-dimensional contact of a rigid roller traversing a viscoelastic half space. IMA. J. Appl. Math. 26, 299–313 (1980)

    Article  Google Scholar 

  24. Vollebregt, E.: User guide for CONTACT, Vollebregt and Kalker’s rolling and sliding contact model. Techical report TR09-03, version 13.1 (2013)

  25. Persson, B.: Rolling friction for hard cylinder and sphere on viscoelastic solid. Eur. Phys. J. E 33, 327–333 (2010)

    Article  Google Scholar 

  26. Carbone, G., Putignano, C.: A novel methodology to predict sliding and rolling friction of viscoelastic materials: theory and experiments. J. Mech. Phys. Solids 61, 1822–1834 (2013)

    Article  Google Scholar 

  27. Persson, B.: Contact mechanics for layered materials with randomly rough surfaces. J. Phys. Condens. Mat. 24, 095008 (2012)

    Google Scholar 

  28. Scaraggi, M., Persson, B.: Theory of viscoelastic lubrication. Tribol Int 72, 118–130 (2014)

    Article  Google Scholar 

  29. Yang, C. Persson, B.: Contact mechanics: contact area and interfacial separation from small contact to full contact. J. Phys. Condens. Mat. 20, 215214 (2008)

    Google Scholar 

  30. Lorenz, B., Pyckhout-Hintzen, W., Persson, B.: Master curve of viscoelastic solid: using causality to determine the optimal shifting procedure, and to test the accuracy of measured data. Polymer 55, 565–571 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We thank K.W. Stöckelhuber and G. Heinrich (Leibniz-Institut für Polymerforschung, Dresden) for supplying the nitrile rubber and B. Lorenz (FZJ) for measuring the viscoelastic modulus. MS acknowledges FZJ for the support and the kind hospitality received during his visit to the PGI-1, where this work has been performed. MS also acknowledges COST Action TD0906 for grants STSM-TD0906-020613-031727 and STSM-TD0906-230413-030252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Scaraggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scaraggi, M., Persson, B.N.J. Rolling Friction: Comparison of Analytical Theory with Exact Numerical Results. Tribol Lett 55, 15–21 (2014). https://doi.org/10.1007/s11249-014-0327-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0327-y

Keywords

Navigation