Skip to main content

Advertisement

Log in

Pressure Dependence of the Shear Strengths of the Tungsten Carbide–Potassium Chloride Interface

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

To address the issue of a pin sliding against a boundary film, we calculate the pressure-dependent shear strength of a bilayer of potassium chloride sandwiched between tungsten carbide (WC) slabs using first-principles, density functional theory (DFT) calculations. It has been shown experimentally that the shear strength S of a KCl film on metal substrates varies with pressure P as S = S 0 + αP, and S 0 = 65 ± 5 MPa and α = 0.14 ± 0.02. Calculations are performed for KCl in contact with the (1\( \bar{1} \)00) and (10\( \bar{1} \)0) faces of WC which have almost square surface unit cells. The effect of pressure is mimicked by varying the distance between the outermost layers of the WC slabs. The DFT calculations confirm that the shear strength depends on pressure and yield average values of S 0 of 70 ± 10 MPa for the WC(1\( \bar{1} \)00) and 51 ± 13 MPa for the WC(10\( \bar{1} \)0) faces, in reasonable agreement with experiment. Since the calculations were performed for a KCl slab in registry with the WC slabs, the agreement with experiment suggests that the atoms at the interface between the tip and film are also in registry. In addition, the calculated and experimental shear strengths are much lower than the shear modulus of KCl, indicating that shear occurs between the tip and film surface without forming a transfer film, in agreement with previous experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koskilinna, J.O., Linnolahti, M., Pakkanen, T.A.: Friction paths for cubic boron nitride: an ab initio study. Tribol. Lett. 27(2), 145–154 (2007). doi:10.1007/s11249-007-9210-4

    Article  CAS  Google Scholar 

  2. Koskilinna, J.O., Linnolahti, M., Pakkanen, T.A.: Friction coefficient for hexagonal boron nitride surfaces from ab initio calculations. Tribol. Lett. 24(1), 37–41 (2006). doi:10.1007/s11249-006-9120-x

    Article  CAS  Google Scholar 

  3. Neitola, R., Ruuska, H., Pakkanen, T.A.: Ab initio studies on nanoscale friction between graphite layers: effect of model size and level of theory. J. Phys. Chem. B 109(20), 10348–10354 (2005). doi:10.1021/jp044065q

    Article  CAS  Google Scholar 

  4. Matsuzawa, N.N., Kishii, N.: Theoretical calculations of coefficients of friction between weakly interacting surfaces. J. Phys. Chem. A 101(51), 10045–10052 (1997). doi:10.1021/jp9717204

    Article  CAS  Google Scholar 

  5. Liang, T., Sawyer, W.G., Perry, S.S., Sinnott, S.B., Phillpot, S.R.: First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys. Rev. B 77(10), 104105 (2008)

    Article  Google Scholar 

  6. Smith, G.S., Modine, N.A., Waghmare, U.V., Kaxiras, E.: First-principles study of static nanoscale friction between MoO3 and MoS2. J. Comput. Aided Mater. Des. 5(1), 61–71 (1998). doi:10.1023/a:1008666530448

    Article  CAS  Google Scholar 

  7. Tománek, D., Zhong, W.: Palladium–graphite interaction potentials based on first-principles calculations. Phys. Rev. B 43(15), 12623–12625 (1991)

    Article  Google Scholar 

  8. Tománek, D., Zhong, W., Thomas, H.: Calculation of an atomically modulated friction force in atomic-force microscopy. Europhys. Lett. 15(8), 887 (1991)

    Article  Google Scholar 

  9. Garvey, M., Furlong, O.J., Weinert, M., Tysoe, W.T.: Shear properties of potassium chloride films on iron obtained using density functional theory. J. Phys. Condens. Matter. 23(26), 265003 (2011). doi:10.1088/0953-8984/23/26/265003

    Article  Google Scholar 

  10. Garvey, M., Weinert, M., Tysoe, W.T.: On the pressure dependence of shear strengths in sliding, boundary-layer friction. Tribol. Lett. 44(1), 67–73 (2011). doi:10.1007/s11249-011-9827-1

    Article  CAS  Google Scholar 

  11. Garvey, M., Weinert, M., Tysoe, W.T.: On the film thickness dependence of shear strengths in sliding, boundary-layer friction. Wear 274–275, 281–285 (2011)

    Google Scholar 

  12. Gao, F., Kotvis, P.V., Tysoe, W.T.: The friction, mobility and transfer of tribological films: potassium chloride and ferrous chloride on iron. Wear 256(11–12), 1005–1017 (2004). doi:10.1016/j.wear.2003.06.002

    Article  CAS  Google Scholar 

  13. Gao, F., Kotvis, P.V., Tysoe, W.T.: The frictional behavior of thin halide films on iron. Tribol. Trans. 47(2), 208–217 (2004). doi:10.1080/05698190490431894

    Article  CAS  Google Scholar 

  14. Gao, F., Kotvis, P.V., Tysoe, W.T.: The frictional properties of thin inorganic halide films on iron measured in ultrahigh vacuum. Tribol. Lett. 15(3), 327–332 (2003). doi:10.1023/a:1024833807985

    Article  CAS  Google Scholar 

  15. Gao, F., Wu, G., Stacchiola, D., Kaltchev, M., Kotvis, P.V., Tysoe, W.T.: The tribological properties of monolayer KCl films on iron in ultrahigh vacuum: modeling the extreme-pressure lubricating interface. Tribol. Lett. 14(2), 99–104 (2003). doi:10.1023/a:1021752203606

    Article  CAS  Google Scholar 

  16. Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31(2), 99–106 (2008). doi:10.1007/s11249-008-9342-1

    Article  Google Scholar 

  17. Tabor, D.: The Hardness of Metals. Clarendon Press, Oxford (1951)

    Google Scholar 

  18. Wu, G., Gao, F., Kaltchev, M., Gutow, J., Mowlem, J.K., Schramm, W.C., Kotvis, P.V., Tysoe, W.T.: An investigation of the tribological properties of thin KCl films on iron in ultrahigh vacuum: modeling the extreme-pressure lubricating interface. Wear 252(7–8), 595–606 (2002). doi:10.1016/s0043-1648(02)00009-1

    Article  CAS  Google Scholar 

  19. Bridgman, P.W.: Shearing phenomena at high pressures, particularly in inorganic compounds. Proc. Am. Acad. Arts Sci. 71, 387–460 (1937)

    Article  CAS  Google Scholar 

  20. Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir–Blodgett layers. Proc. R. Soc. Lond. A Math. Phys. Sci. 380(1779), 389–407 (1982). doi:10.1098/rspa.1982.0048

    Article  CAS  Google Scholar 

  21. Sutcliffe, M.J., Taylor, S.R., Cameron, A.: Molecular asperity theory of boundary friction. Wear 51(1), 181–192 (1978). doi:10.1016/0043-1648(78)90065-0

    Article  CAS  Google Scholar 

  22. Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., Stupp, B.C.: Hertzian stress contribution to low friction behavior of thin MoS2 coatings. Appl. Phys. Lett. 57(10), 995–997 (1990)

    Article  CAS  Google Scholar 

  23. Schwarz, U.D., Allers, W., Gensterblum, G., Wiesendanger, R.: Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. Phys. Rev. B 52(20), 14976 (1995)

    Article  CAS  Google Scholar 

  24. Briscoe, B.J., Smith, A.C.: The influence of dynamic loading on sliding friction. Nature 278(5706), 725–726 (1979)

    Article  Google Scholar 

  25. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502 (2003)

    Article  CAS  Google Scholar 

  26. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Kinetic Monte Carlo theory of sliding friction. Phys. Rev. B 80(15) (2009). doi:10.1103/PhysRevB.80.153408

  27. Mikulski, P.T., Harrison, J.A.: Packing-density effects on the friction of n-alkane monolayers. J. Am. Chem. Soc. 123(28), 6873–6881 (2001). doi:10.1021/ja010189u

    Article  CAS  Google Scholar 

  28. Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124(24), 7202–7209 (2002). doi:10.1021/ja0178618

    Article  CAS  Google Scholar 

  29. He, G., Robbins, M.O.: Simulations of the kinetic friction due to adsorbed surface layers. Tribol. Lett. 10(1–2), 7–14 (2001). doi:10.1023/a:1009030413641

    Article  CAS  Google Scholar 

  30. Harrison, J.A., Gao, G., Schall, J.D., Knippenberg, M.T., Mikulski, P.T.: Friction between solids. Philos. Trans. R. Soc. Lond. A 366(1869), 1469–1495 (2008). doi:10.1098/rsta.2007.2169

    Article  CAS  Google Scholar 

  31. Mikulski, P.T., Herman, L.A., Harrison, J.A.: Odd and even model self-assembled monolayers: links between friction and structure. Langmuir 21(26), 12197–12206 (2005). doi:10.1021/la052044x

    Article  CAS  Google Scholar 

  32. Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B 41(17), 11837–11851 (1990)

    Article  CAS  Google Scholar 

  33. Müser, M.H.: Structural lubricity: role of dimension and symmetry. Europhys. Lett. 66(1), 97–103 (2004). doi:10.1209/epl/i2003-10139-6

    Article  Google Scholar 

  34. Müser, M.H., Robbins, M.O.: Conditions for static friction between flat crystalline surfaces. Phys. Rev. B 61(3), 2335–2342 (2000)

    Article  Google Scholar 

  35. Peyrard, M., Aubry, S.: Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel–Kontorova model. J. Phys. C 16(9), 1593 (1983)

    Article  CAS  Google Scholar 

  36. Zhong, Y., Zhu, H., Shaw, L.L., Ramprasad, R.: The equilibrium morphology of WC particles—a combined ab initio and experimental study. Acta Mater. 59(9), 3748–3757 (2011). doi:10.1016/j.actamat.2011.03.018

    Article  CAS  Google Scholar 

  37. Kong, X.-S., You, Y.-W., Xia, J.H., Liu, C.S., Fang, Q.F., Luo, G.N., Huang, Q.-Y.: First principles study of intrinsic defects in hexagonal tungsten carbide. J. Nucl. Mater. 406(3), 323–329 (2010). doi:10.1016/j.jnucmat.2010.09.002

    Article  CAS  Google Scholar 

  38. Gaston, N., Hendy, S.: Hydrogen adsorption on model tungsten carbide surfaces. Catal. Today 146(1–2), 223–229 (2009). doi:10.1016/j.cattod.2008.10.050

    Article  CAS  Google Scholar 

  39. Marinelli, F., Jelea, A., Allouche, A.: Interactions of H with tungsten carbide surfaces: an ab initio study. Surf. Sci. 601(2), 578–587 (2007). doi:10.1016/j.susc.2006.10.044

    Article  CAS  Google Scholar 

  40. Juslin, N.: Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system. J. Appl. Phys. 98(12), 123520 (2005)

    Article  Google Scholar 

  41. Wyckoff, R.W.G.: Crystal Structures. Interscience Publishers, New York (1963)

    Google Scholar 

  42. Weinert, M., Wimmer, E., Freeman, A.J.: Total-energy all-electron density functional method for bulk solids and surfaces. Phys. Rev. B 26(8), 4571 (1982)

    Article  CAS  Google Scholar 

  43. Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J.: Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 24(2), 864 (1981)

    Article  CAS  Google Scholar 

  44. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  CAS  Google Scholar 

  45. Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)

    CAS  Google Scholar 

  46. Gao, F., Furlong, O., Kotvis, P., Tysoe, W.: Tribological properties of films formed by the reaction of carbon tetrachloride with iron. Tribol. Lett. 20(2), 171–176 (2005). doi:10.1007/s11249-005-8313-z

    Article  CAS  Google Scholar 

  47. Bauer, E.: Epitaxy of metals on metals. Appl. Surf. Sci. 11–12, 479–494 (1982). doi:10.1016/0378-5963(82)90094-0

    Google Scholar 

  48. Filleter, T., Paul, W., Bennewitz, R.: Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys. Rev. B 77(3), 035430 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under grant number CMMI 0826151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garvey, M., Weinert, M. & Tysoe, W.T. Pressure Dependence of the Shear Strengths of the Tungsten Carbide–Potassium Chloride Interface. Tribol Lett 50, 105–113 (2013). https://doi.org/10.1007/s11249-013-0109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0109-y

Keywords

Navigation