Skip to main content
Log in

Nanotribological Properties of Fluorinated, Hydrogenated, and Oxidized Graphenes

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Recently, the tribological properties of graphene have been intensively examined for potential applications in micro- and nano-mechanical graphene-based devices. Here, we report that the tribological properties can be easily altered via simple chemical modifications of the graphene surface. Friction force microscopy measurements show that hydrogenated, fluorinated, and oxidized graphenes exhibit, 2-, 6-, and 7-fold enhanced nanoscale friction on their surfaces, respectively, compared to pristine graphene. The measured nanoscale friction should be associated with the adhesive and elastic properties of the chemically modified graphenes. Density-functional theory calculations suggest that, while the adhesive properties of chemically modified graphenes are marginally reduced down to ~30 %, the out-of-plane elastic properties are drastically increased up to 800 %. Based on these findings, we propose that nanoscale friction on graphene surfaces is characteristically different from that on conventional solid surfaces; stiffer graphene exhibits higher friction, whereas a stiffer three-dimensional solid generally exhibits lower friction. The unusual friction mechanics of graphene is attributed to the intrinsic mechanical anisotropy of graphene, which is inherently stiff in plane, but remarkably flexible out of plane. The out-of-plane flexibility can be modulated up to an order of magnitude by chemical treatment of the graphene surface. The correlation between the measured nanoscale friction and the calculated out-of-plane flexibility suggests that the frictional energy in graphene is mainly dissipated through the out-of-plane vibrations, or the flexural phonons of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Jeon, K.J., Lee, Z., Pollak, E., Moreschini, L., Bostwick, A., Park, C.M., Mendelsberg, R., Radmilovic, V., Kostecki, R., Richardson, T.J., Rotenberg, E.: Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 5(2), 1042–1046 (2011)

    Article  CAS  Google Scholar 

  2. Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Cheng, H.-M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., Geim, A.K.: Fluorographene: a two-dimensional counterpart of teflon. Small 6(24), 2877–2884 (2010)

    Article  CAS  Google Scholar 

  3. Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4), 217–224 (2009)

    Article  CAS  Google Scholar 

  4. Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimenstional hydrocarbon. Phys. Rev. B 75(15), 153401 (2007)

    Article  Google Scholar 

  5. Zbořil, R., Karlický, F., Bourlinos, A.B., Steriotis, T.A., Stubos, A.K., Georgakilas, V., Šafářová, K., Jančík, D., Trapalis, C., Otyepka, M.: Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6(24), 2885–2891 (2010)

    Article  Google Scholar 

  6. Eda, G., Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415 (2010)

    Article  CAS  Google Scholar 

  7. Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323(5914), 610–613 (2009)

    Article  CAS  Google Scholar 

  8. Liu, H., Ryu, S., Chen, Z., Steigerwald, M.L., Nuckolls, C., Brus, L.E.: Photochemical reactivity of graphene. J. Am. Chem. Soc. 131(47), 17099–17101 (2009)

    Article  CAS  Google Scholar 

  9. Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., Horn, K., Bennewitz, R.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102(8), 086102 (2009)

    Article  CAS  Google Scholar 

  10. Lee, C., Li, Q.Y., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)

    Article  CAS  Google Scholar 

  11. Kwon, S., Chung, H.J., Seo, S., Park, J.Y.: Domain structures of single layer graphene imaged with conductive probe atomic force microscopy. Surf. Interface Anal. 44(6), 768–771 (2012)

    Article  CAS  Google Scholar 

  12. Lee, H., Lee, N., Seo, Y., Eom, J., Lee, S.: Comparison of frictional forces on graphene and graphite. Nanotechnology 20(32), 325701 (2009)

    Article  Google Scholar 

  13. Choi, J.S., Kim, J.S., Byun, I.S., Lee, D.H., Lee, M.J., Park, B.H., Lee, C., Yoon, D., Cheong, H., Lee, K.H., Son, Y.W., Park, J.Y., Salmeron, M.: Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 333(6042), 607–610 (2011)

    Article  CAS  Google Scholar 

  14. Choi, J.S., Kim, J.S., Byun, I.S., Lee, D.H., Hwang, I.R., Park, B.H., Choi, T., Park, J.Y., Salmeron, M.: Facile characterization of ripple domains on exfoliated graphene. Rev. Sci. Instrum. 83(7), 073905 (2012)

    Article  Google Scholar 

  15. Carpick, R.W., Ogletree, D.F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70(12), 1548–1550 (1997)

    Article  CAS  Google Scholar 

  16. Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97(4), 1163–1194 (1997)

    Article  CAS  Google Scholar 

  17. Balog, R., Jorgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Laegsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T.G., Hofmann, P., Hornekaer, L.: Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9(4), 315–319 (2010)

    Article  CAS  Google Scholar 

  18. Wu, X.S., Sprinkle, M., Li, X., Ming, F., Berger, C., de Heer, W.A.: Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 101, 2 (2008)

    Google Scholar 

  19. Kwon, S., Ko, J.H., Jeon, K.J., Kim, Y.-H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12(12), 6043–6048 (2012)

    Article  CAS  Google Scholar 

  20. Weng, L.S., Zhang, L.Y., Chen, Y.P., Rokhinson, L.P.: Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett. 93(9), 093107 (2008)

    Article  Google Scholar 

  21. Giesbers, A.J.M., Zeitler, U., Neubeck, S., Freitag, F., Novoselov, K.S., Maan, J.C.: Nanolithography and manipulation of graphene using an atomic force microscope. Solid State Commun. 147(9–10), 366–369 (2008)

    Article  CAS  Google Scholar 

  22. Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K., Machida, T.: Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl. Phys. Lett. 94, 8 (2009)

    Article  Google Scholar 

  23. Neubeck, S., Freitag, F., Yang, R., Novoselov, K.S.: Scanning probe lithography on graphene. Phys. Status Solidi B 247(11–12), 2904–2908 (2010)

    Article  CAS  Google Scholar 

  24. Masubuchi, S., Arai, M., Machida, T.: Atomic force microscopy based tunable local anodic oxidation of graphene. Nano Lett. 11(11), 4542–4546 (2011)

    Article  CAS  Google Scholar 

  25. Byun, I.S., Yoon, D., Choi, J.S., Hwang, I., Lee, D.H., Lee, M.J., Kawai, T., Son, Y.W., Jia, Q., Cheong, H., Park, B.H.: Nanoscale lithography on mono layer graphene using hydrogenation and oxidation. ACS Nano 5(8), 6417–6424 (2011)

    Article  CAS  Google Scholar 

  26. Robinson, J.T., Burgess, J.S., Junkermeier, C.E., Badescu, S.C., Reinecke, T.L., Perkins, F.K., Zalalutdniov, M.K., Baldwin, J.W., Culbertson, J.C., Sheehan, P.E., Snow, E.S.: Properties of fluorinated graphene films. Nano Lett. 10(8), 3001–3005 (2010)

    Article  CAS  Google Scholar 

  27. Yoon, D., Moon, H., Cheong, H., Choi, J.S., Choi, J.A., Park, B.H.: Variations in the raman spectrum as a function of the number of graphene layers. J. Korean Phys. Soc. 55(3), 1299–1303 (2009)

    Article  CAS  Google Scholar 

  28. Liu, L., Ryu, S.M., Tomasik, M.R., Stolyarova, E., Jung, N., Hybertsen, M.S., Steigerwald, M.L., Brus, L.E., Flynn, G.W.: Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett. 8(7), 1965–1970 (2008)

    Article  CAS  Google Scholar 

  29. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice, C.A., Ruoff, R.S.: Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy. Carbon 47(1), 145–152 (2009)

    Article  CAS  Google Scholar 

  30. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mostrogiovanni, D., Granozzi, G., Garfunkel, E., Chhowalla, M.: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19(16), 2577–2583 (2009)

    Article  CAS  Google Scholar 

  31. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004)

    Article  Google Scholar 

  32. Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67(19), 2642–2645 (1991)

    Article  CAS  Google Scholar 

  33. Park, J.Y., Ogletree, D.F., Thiel, P.A., Salmeron, M.: Electronic control of friction in silicon pn junctions. Science 313(5784), 186 (2006)

    Article  CAS  Google Scholar 

  34. Kwon, S., Choi, S., Chung, H.J., Yang, H., Seo, S., Jhi, S.H., Park, J.Y.: Probing nanoscale conductance of monolayer graphene under pressure. Appl. Phys. Lett. 99(1), 013110 (2011)

    Article  Google Scholar 

  35. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  CAS  Google Scholar 

  36. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)

    Article  CAS  Google Scholar 

  37. Wei, X.D., Fragneaud, B., Marianetti, C.A., Kysar, J.W.: Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys. Rev. B 80(20), 205407 (2009)

    Article  Google Scholar 

  38. Munoz, E., Singh, A.K., Ribas, M.A., Penev, E.S., Yakobson, B.I.: The ultimate diamond slab: graphAne versus graphEne. Diam. Relat. Mater. 19(5–6), 368–373 (2010)

    Article  CAS  Google Scholar 

  39. Lu, Q., Huang, R.: Nonlinear Mechanics of Single-Atomic-Layer Graphene Sheets. Int. J. Appl. Mech. 1(3), 443–467 (2009)

    Article  Google Scholar 

  40. Lantz, M.A.: OShea, S. J., Hoole, A. C. F. and Welland, M. E.: Lateral stiffness of the tip and tip-sample contact in frictional force microscopy. Appl. Phys. Lett. 70(8), 970–972 (1997)

    Article  CAS  Google Scholar 

  41. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the WCU (World Class University) programs (R-31-2008-000-10055-0, R31-2008-000-10071-0, and R31-2008-000-10057-0), and the National Research Foundation of Korea (NRF) grants (2012R1A2A1A01009249, KRF-2010-0005390, and 2012-046191) funded by the Korea goverment (MEST). This study was also supported by the Research Center Program (CA1201) of IBS (Institute for Basic Science), Quantum Metamaterials Research Center (Grant No. R11-2008-053-03002-0), and the Global Frontier R&D Program by the Center for Multiscale Energy Systems (2011-0031566) and the Center for Advanced Soft Electronics (2011-0031640) through the NRF of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Hyun Kim or Jeong Young Park.

Additional information

Jae-Hyeon Ko and Sangku Kwon contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, JH., Kwon, S., Byun, IS. et al. Nanotribological Properties of Fluorinated, Hydrogenated, and Oxidized Graphenes. Tribol Lett 50, 137–144 (2013). https://doi.org/10.1007/s11249-012-0099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0099-1

Keywords

Navigation