, Volume 36, Issue 3, pp 233-238
Date: 14 Jul 2009

Characterization of Microscale Wear in a Polysilicon-Based MEMS Device Using AFM and PEEM–NEXAFS Spectromicroscopy

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM–NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM–NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO2. The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM).