Skip to main content
Log in

Computational model of asperity contact for the prediction of UHMWPE mechanical and wear behaviour in total hip joint replacements

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The effect of sliding friction on the size of yielding region in the ultra high molecular weight polyethylene asperity in contact with metal was investigated. The main objective of this work was to gain an understanding of wear particle generation mechanism from the two-dimensional finite element model. To assess the influence of the parameters of interest, different friction coefficients and loading conditions were used in the numerical simulations. Results from the finite element analysis show that the increase of the yielding region is strongly influenced by the friction coefficient and the rise in the tangential force, which is related to the generation of wear particles. Finite element wear particle generation model, based on strain discontinuities, was therefore proposed. The results obtained in this study can lead to the development of an accurate finite element particle generation model that would be of use in the assessment of an artificial implant performance and their development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

Similar content being viewed by others

Abbreviations

n :

normal vector

S t :

discontinuity path

u(r):

displacement as a function of root, r

ψ (x,t):

propagation direction

ψ (e)(t):

vector of propagation direction at time, t and element, e

Y:

yield point

∇:

spatial gratient \(\nabla = \frac{\partial } {{\partial r}} = \frac{\partial } {{\partial x}} + \frac{\partial } {{\partial y}}\) (in 2D cases)

ε(r):

strain as a function of root r

Ω:

2D entire body

σf :

flow stress

σY :

yield stress

θ :

asperity base angle

References

  1. Mow V.C., Ratcliffe A., Woo S.L.Y. (1990) Bio-tribology of Synovial Joints. Springer-Verlag, New York

    Google Scholar 

  2. Podsiadlo P., Kuster M., Stachowiak G.W. (1997) Wear 210: 318

    Article  CAS  Google Scholar 

  3. Dowson D. (1995) Wear 190: 171

    Article  CAS  Google Scholar 

  4. Podsiadlo P., Stachowiak G.W. (1999) Wear 230: 184

    Article  CAS  Google Scholar 

  5. Firkins P.J., Tipper J.L., Ingham E., Stone M.H., Farrar R., Fisher J. (2001) J. Bionzechanics 34: 1291

    Article  CAS  Google Scholar 

  6. Maloney W.J., Lane Smith R., Castro F., Schurman D. (1993) J. Bone Jt. Surgery 75A: 835

    Google Scholar 

  7. Wirganowicz P.Z., Thomas B.J. (1997) Clinical Orthop. 338: 100

    Article  Google Scholar 

  8. Catelas I., Petit A., Zukor; D.J., Marchand R., Yahia L.H., Huk O.L. (1999) Biomaterials 20: 625

    Article  CAS  Google Scholar 

  9. Goodman S.B., Huie P., Song Y.P., Schurman D., Maloney W., Woolson S., Sibley P. (1998) J. Bone Jt. Surgery 80: 531

    Article  CAS  Google Scholar 

  10. Chiba J., Maloney W.J., Inoue K., Rubash H.E. (2001) J. Arthroplasty 16: 101

    Article  CAS  Google Scholar 

  11. Kobayashi A., Freeman M.M., Bonfield W. (1997) J. Bone Jt. Surgery 14: 840

    Google Scholar 

  12. Green T.R., Fisher J., Stone M., Wroblewski B.M., Ingham E. (1998) Biomaterials 19: 2297

    Article  CAS  Google Scholar 

  13. Oparaugo P.C., Clarke I.C., Malchau H., Herberts P. (2001) Acta Orthop. Scand. 72: 22

    Article  CAS  Google Scholar 

  14. Lancaster J.G., Dowson D., Isaac G.H., Fisher J. (1996) Proc. Inst. Mech. Engrs. (H) J. Eng Med. 211: 17

    Google Scholar 

  15. Ingham E., Fisher J. (2000) Proc. Inst. Mech. Engrs. (H) J. Eng. Med. 214: 21

    CAS  Google Scholar 

  16. Tipper J.L., Firkins P.J., Besong A.A., Barbour P.S.M., Nevelos J., Stone M.H., Ingham E., Fisher J. (2001) Wear 250: 120

    Article  Google Scholar 

  17. Hall R.M., Siney P., Unsworth A., Wroblewski B.M. (1998) Proc. Inst. Mech. Engrs. (H) J. Eng. Med. 211: 321

    Google Scholar 

  18. Learmonth I.D., Cunningham J.L. (1997) Proc. Inst. Mech. Engrs. (H) .J. Eng. Med. 211: 49

    CAS  Google Scholar 

  19. Hall R.M., Siney P., Unsworth A., Wroblewski B.M. (1997) Med. Eng. Phys. 19: 711

    Article  CAS  Google Scholar 

  20. McNie C., Barton D.C., Stone M.H., Fisher J. (1998) Proc. Inst. Mech. Engrs. (H) J. Eng. Med, 212: 49

    CAS  Google Scholar 

  21. Adams G.G., Nosonovsky M. (2000) Tribol. Intl. 33: 431

    Article  Google Scholar 

  22. G.W. Stachowiak, in: Advances in Composites Tribology, K. Friedrich, ed. (Elsevier, Amsterdam 1993) Chapter 14, p. 509

  23. Yao J.Q., Blanchet T.A., Murphy D.J., Laurent M.P. (2003) Wear 255: 111

    Google Scholar 

  24. Cooper J.R, Dawson D., Fisher J. (1991) Wear 151: 391

    Article  CAS  Google Scholar 

  25. Scholes S.C., Green S.M., Unsworth A. (2003) Proc. Inst. Mech. Engrs. (H) J. Eng. Med. 215: 523

    Google Scholar 

  26. Vassiliou K, Unsworth A. (2004) Proc. Inst. Mech. Engrs. (H) J. Eng. Med. 218: 101

    CAS  Google Scholar 

  27. Fisher J., Dowson D., Hamdzah H., Lee H.L. (1994) Wear 175: 219

    Article  CAS  Google Scholar 

  28. Kaliszky S. (1989) Plasticity: Theory and Engineering Applications Elsevier Science Publishing Company, Inc., New York

    Google Scholar 

  29. Kurtz S.M., Pruitt L., Jewett C.W., Crawford R.P., Crane D.J., Edidin A.A. (1998) Biomaterials 19: 1989

    Article  CAS  Google Scholar 

  30. Matweb (Material Property Data), BioDur Carpenter CCM Alloy. Data alloy [online]. Available from: http://www.matweb.com/search/SpecificMaterial,asp?bassnum=NCAR40

  31. Jin Z.-M. (2000) Proc. Inst. Mech. Engrs. (H) J. Eng. Med. 214: 425

    CAS  Google Scholar 

  32. Roy Chowdhury S.K., Mishra A., Pradhan B., Saha D. (2004) Wear 256: 1026

    Article  Google Scholar 

  33. Oliver J. (2000) Intl. J. Solids Stract. 37: 7207

    Article  Google Scholar 

  34. Sukumar N., Prevost J.-H. (2003) Intl. J. Solids Stract. 40: 7513

    Article  Google Scholar 

  35. Wells G.N., Sluys L.J. (2000) Eng. Fract. Mech. 65: 263

    Article  Google Scholar 

  36. Wells G.N., Sluys L.J. (2001) Intl. J. Num. Method Eng. 50: 2667

    Article  Google Scholar 

  37. Hoskins R.F. (1979) Generalised Functions Ellis Horwood Limited (Div, John Willey & Sons, London

    Google Scholar 

  38. Pradeilles-Duval R.-M., Stolz C. (1995) J. Mech. Phys. Solids 43: 91

    Article  CAS  Google Scholar 

  39. Oliver J., Huespe A.E. (2004) Camp. Meth. Appl. Mech. Eng. 193: 3195

    Article  Google Scholar 

  40. Kimura Y., Childs T.H.C. (1999) Intl. J. Mech. Sci. 41: 283

    Article  Google Scholar 

  41. Wang A., Sun D.C., Stark C., Dumbleton J.H. (1995) Wear 181–483: 241

    Google Scholar 

  42. Meyer R.W., Pruitt L.A. (2001) Polymer 42: 5293

    Article  CAS  Google Scholar 

  43. Wang A., Sun D.C., Yau S.-S., Edwards B., Sokol M., Essner A., Polineni V.K., Stark C., Dumbleton J.H. (1997) Wear 203–204: 230–241

    Article  Google Scholar 

  44. Edidin A.A., Pruitt L., Jewett C.W., Crane D.J., Roberts D., (1999) J. Arthroplasty 14: 616

    Article  CAS  Google Scholar 

  45. Krzypow D.J., Rimnac C.M. (2000) Biomaterials 21: 2081

    Article  CAS  Google Scholar 

  46. Oliver J., Huespe A.E. (2004) Comp. Meth. Appl. Mech. Eng. 193:2987

    Article  Google Scholar 

  47. McKellop H., Campbell P., Park S.H., Schmalzried T.P., Grigoris P., Amstutz H.C., Sarmiento A. (1995) Clin. Orthop. Related Res. 311: 3

    Google Scholar 

  48. Affatato S., Fernandes B., Tucci A., Esposito L., Toni A., (2001) Biomaterials 22: 2325

    Article  CAS  Google Scholar 

  49. McKellop H., Shen F.W., Lu B., Campbell P., Salovey R., (2000) J. Bone Jt. Surgery 82-A: 1708

    CAS  Google Scholar 

  50. Agarwal S. (2004) Curr. Orthop. 18: 220

    Article  Google Scholar 

  51. Shanbhag A.S., Bailey H.O., Hwang D.S. (2000) J. Biomed. Matter. Res. Appl. Biomater. 53: 100

    Article  CAS  Google Scholar 

  52. Schmalzried T.P., Campbell P., Schmitt A.K., Brown I.C., Amstutz H.C. (1997) J. Biomed. Mater. Res. Appl. Biomater. 38: 203

    Article  CAS  Google Scholar 

  53. Barrett T.S., Stachowiak G.W., Batchelor A.W. (1992) Wear 153:331

    Article  CAS  Google Scholar 

  54. Campbell P., Ma S., Yeom B., McKellop H., Scbmalzried T.P., Amstutz H.C. (1995) J. Biomed. Mater Res. 29:123

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the School of Mechanical Engineering, University of Western Australia (UWA) for its help during the preparation of this article. The first author would like to thank the Australian Development Scholarship (ADS) scheme for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.W. Stachowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suhendra, N., Stachowiak, G. Computational model of asperity contact for the prediction of UHMWPE mechanical and wear behaviour in total hip joint replacements. Tribol Lett 25, 9–22 (2007). https://doi.org/10.1007/s11249-006-9128-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-006-9128-2

Keywords

Navigation