Skip to main content
Log in

RNA silencing in the life cycle of soybean: multiple restriction systems and spatiotemporal variation associated with plant architecture

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The expression of transgenes introduced into a plant genome is sometimes suppressed by RNA silencing. Although local and systemic spread of RNA silencing have been studied, little is known about the mechanisms underlying spatial and temporal variation in transgene silencing between individual plants or between plants of different generations, which occurs seemingly stochastically. Here, we analyzed the occurrence, spread, and transmission of RNA silencing of the green fluorescent protein (GFP) gene over multiple generations of the progeny of a single soybean transformant. Observation of GFP fluorescence in entire plants of the T3–T5 generations indicated that the initiation and subsequent spread of GFP silencing varied between individuals, although this GFP silencing most frequently began in the primary leaves. In addition, GFP silencing could spread into the outer layer of seed coat tissues but was hardly detectable in the embryos. These results are consistent with the notion that transgene silencing involves its reset during reproductive phase, initiation after germination, and systemic spread in each generation. GFP silencing was absent in the pulvinus, suggesting that its cortical cells inhibit cell-to-cell spread or induction of RNA silencing. The extent of GFP silencing could differ between the stem and a petiole or between petiolules, which have limited vascular bundles connecting them and thus deter long-distant movement of silencing. Taken together, these observations indicate that the initiation and/or spread of RNA silencing depend on specific features of the architecture of the plant in addition to the mechanisms that can be conserved in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balandin T, Castresana C (1997) Silencing of a β-1,3-glucanase transgene is overcome during seed formation. Plant Mol Biol 34:125–137

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Brosnan CA, Voinnet O (2011) Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol 14:580–587

    Article  CAS  PubMed  Google Scholar 

  • Cluster PD, O’Dell M, Metzlaff M, Flavell RB (1996) Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression. Plant Mol Biol 32:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho Niebel F, Frendo P, Van Montagu M, Cornelissen M (1995) Post-transcriptional cosuppression of β-1,3-glucanase genes does not affect accumulation of transgene nuclear mRNA. Plant Cell 7:347–358

    Article  PubMed  PubMed Central  Google Scholar 

  • de Carvalho F, Gheysen G, Kushnir S, Van Montagu M, Inzé D, Castresana C (1992) Suppression of β-1,3-glucanase transgene expression in homozygous plants. EMBO J 11:2595–2602

    PubMed  PubMed Central  Google Scholar 

  • Dehio C, Schell J (1994) Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proc Natl Acad Sci USA 91:5538–5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorlhac de Borne F, Vincentz M, Chupeau Y, Vaucheret H (1994) Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants. Mol Gen Genet 243:613–621

    Article  CAS  PubMed  Google Scholar 

  • Dormer KJ (1945) An investigation of the taxonomic value of shoot structure in angiosperms with especial reference to Leguminosae. Ann Bot 9:141–153

    Article  Google Scholar 

  • Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Kanazawa A, Kusaba M, Masuta C (2003) A simple and rapid method to detect plant siRNAs using nonradioactive probes. Plant Mol Biol Report 21:51–58

    Article  CAS  Google Scholar 

  • Grignon N, Touraine B, Grignon C (1992) Internal phloem in the pulvinus of soybean plants. Am J Bot 79:265–274

    Article  Google Scholar 

  • Han Y, Griffiths A, Li H, Grierson D (2004) The effect of endogenous mRNA levels on co-suppression in tomato. FEBS Lett 563:123–128

    Article  CAS  PubMed  Google Scholar 

  • Hart CM, Fischer B, Neuhaus JM, Meins F (1992) Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet 235:179–188

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  CAS  PubMed  Google Scholar 

  • Kalantidis K, Tsagris M, Tabler M (2006) Spontaneous short-range silencing of a GFP transgene in Nicotiana benthamiana is possibly mediated by small quantities of siRNA that do not trigger systemic silencing. Plant J 45:1006–1016

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A (2008) RNA silencing manifested as visibly altered phenotypes in plants. Plant Biotechnol 25:423–435

    Article  CAS  Google Scholar 

  • Kanazawa A, O’Dell M, Hellens RP (2007) Epigenetic inactivation of chalcone synthase-A transgene transcription in petunia leads to a reversion of the post-transcriptional gene silencing phenotype. Plant Cell Physiol 48:638–647

    Article  CAS  PubMed  Google Scholar 

  • Kasai M, Kanazawa A (2012) RNA silencing as a tool to uncover gene function and engineer novel traits in soybean. Breed Sci 61:468–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai M, Koseki M, Goto K, Masuta C, Ishii S, Hellens RP, Taneda A, Kanazawa A (2012) Coincident sequence-specific RNA degradation of linked transgenes in the plant genome. Plant Mol Biol 78:259–273

    Article  CAS  PubMed  Google Scholar 

  • Kasai M, Matsumura H, Yoshida K, Terauchi R, Taneda A, Kanazawa A (2013) Deep sequencing uncovers commonality in small RNA profiles between transgene-induced and naturally occurring RNA silencing of chalcone synthase-A gene in petunia. BMC Genom 14:63

    Article  CAS  Google Scholar 

  • Kim SI, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Zambryski P (2007) RNA silencing and its cell-to-cell spread during Arabidopsis embryogenesis. Plant J 50:597–604

    Article  CAS  PubMed  Google Scholar 

  • Kunz C, Schob H, Stam M, Kooter J, Meins F (1996) Developmentally regulated silencing and reactivation of tobacco chitinase transgene expression. Plant J 10:437–450

    Article  CAS  Google Scholar 

  • Lechtenberg B, Schubert D, Forsbach A, Gils M, Schmidt R (2003) Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J 34:507–517

    Article  CAS  PubMed  Google Scholar 

  • Lersten NR, Carlson JB (2004) Vegetative morphology. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production and uses, 3rd edn. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 15–57

    Google Scholar 

  • Liang D, White RG, Waterhouse PM (2012) Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement. Plant Physiol 159:984–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewski P, Wołoszyńska M, Jańska H (2009) Developmentally early and late onset of Rps10 silencing in Arabidopsis thaliana: genetic and environmental regulation. J Exp Bot 60:1163–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marjanac G, Karimi M, Naudts M, Beeckman T, Depicker A, De Buck S (2009) Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types. New Phytol 184:851–864

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJ (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 1677:129–141

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    Article  CAS  PubMed  Google Scholar 

  • Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30:3553–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meza TJ, Kamfjord D, Håkelien AM, Evans I, Godager LH, Mandal A, Jakobsen KS, Aalen RB (2001) The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Res 10:53–67

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhara I, Shirasawa-Seo N, Iwai T, Nakamura S, Honkura R, Ohashi Y (2002) Release from post-transcriptional gene silencing by cell proliferation in transgenic tobacco plants: possible mechanism for noninheritance of the silencing. Genetics 160:343–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875

    Article  CAS  PubMed  Google Scholar 

  • Otagaki S, Kawai M, Masuta C, Kanazawa A (2011) Size and positional effects of promoter RNA segments on virus-induced RNA-directed DNA methylation and transcriptional gene silencing. Epigenetics 6:681–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palauqui JC, Elmayan T, Pollien JM, Vaucheret H (1997) Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J 16:4738–4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent JS, Martínez de Alba AE, Vaucheret H (2012) The origin and effect of small RNA signaling in plants. Front Plant Sci 3:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Que Q, Wang HY, English JJ, Jorgensen RA (1997) The frequency and degree of cosuppression by sense chalcone synthase transgenes are dependent on transgene promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9:1357–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Yamada T, Kita Y, Ishimoto M, Kitamura K (2007) Production of transgenic plants and their early seed set in Japanese soybean variety, Kariyutaka. Plant Biotechnol 24:533–536

    Article  CAS  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HA, Swaney SL, Parks TD, Wernsman EA, Dougherty WG (1994) Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs. Plant Cell 6:1441–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stam M, Viterbo A, Mol JN, Kooter JM (1998) Position-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants. Mol Cell Biol 18:6165–6177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szittya G, Silhavy D, Molnár A, Havelda Z, Lovas A, Lakatos L, Bánfalvi Z, Burgyán J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournier B, Tabler M, Kalantidis K (2006) Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. Plant J 47:383–394

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen W, Ruttink T, Borst-Vrenssen AW, van der Plas LH, van der Krol AR (2001) Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants. J Exp Bot 52:949–959

    Article  PubMed  Google Scholar 

  • Vaucheret H (2008) Plant Argonautes. Trends Plant Sci 13:350–358

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Palauqui JC, Elmayan T, Moffatt B (1995) Molecular and genetic analysis of nitrite reductase co-suppression in transgenic tobacco plants. Mol Gen Genet 248:311–317

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Nussaume L, Palauqui JC, Quillere I, Elmayan T (1997) A transcriptionally active state is required for post-transcriptional silencing (cosuppression) of nitrate reductase host genes and transgenes. Plant Cell 9:1495–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voinnet O (2002) RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol 5:444–451

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2008) Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13:317–328

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Baulcombe DC (1997) Systemic signalling in gene silencing. Nature 389:553

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Iyer LM, Pancholy R, Shi X, Hall TC (2005) Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. New Phytol 167:751–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by JSPS KAKENHI Grant No. 26660001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kanazawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, A., Sato, H., Kasai, M. et al. RNA silencing in the life cycle of soybean: multiple restriction systems and spatiotemporal variation associated with plant architecture. Transgenic Res 26, 349–362 (2017). https://doi.org/10.1007/s11248-017-0011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-017-0011-8

Keywords

Navigation