Skip to main content

Advertisement

Log in

Advances in genetic engineering of the avian genome: “Realising the promise”

  • TARC X
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express “humanised” antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn J, Shin S, Suh Y, Park JY, Hwang S, Lee K (2015) Identification of the Avian RBP7 gene as a new adipose-specific gene and RBP7 promoter-driven GFP expression in adipose tissue of transgenic quail. PLoS ONE 10:e0124768

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosselman RA, Hsu RY, Boggs T, Hu S, Bruszewski J, Ou S, Souza L, Kozar L, Martin F, Nicolson M et al (1989) Replication-defective vectors of reticuloendotheliosis virus transduce exogenous genes into somatic stem cells of the unincubated chicken embryo. J Virol 63:2680–2689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169

    Article  CAS  PubMed  Google Scholar 

  • Chang IK, Jeong DK, Hong YH, Park TS, Moon YK, Ohno T, Han JY (1997) Production of germline chimeric chickens by transfer of cultured primordial germ cells. Cell Biol Int 21:495–499

    Article  CAS  PubMed  Google Scholar 

  • Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  PubMed  Google Scholar 

  • Clark J, Whitelaw B (2003) A future for transgenic livestock. Nat Rev Genet 4:825–833

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini F, Lacy E (1981) Introduction of a rabbit β-globin gene into the mouse germ line. Nature 294:92–94

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Ruddle F (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214:1244–1246

    Article  CAS  PubMed  Google Scholar 

  • Han JY (2009) Germ cells and transgenesis in chickens. Comp Immunol Microbiol Infect Dis 32:61–80

    Article  PubMed  Google Scholar 

  • Han JY, Park TS, Hong YH, Jeong DK, Kim JN, Kim KD, Lim JM (2002) Production of germline chimeras by transfer of chicken gonadal primordial germ cells maintained in vitro for an extended period. Theriogenology 58:1531–1539

    Article  CAS  PubMed  Google Scholar 

  • Harvey AJ, Ivarie R (2003) Validating the hen as a bioreactor for the production of exogenous proteins in egg white. Poult Sci 82:927–930

    Article  CAS  PubMed  Google Scholar 

  • Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 108:12013–12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter CV, Tiley LS, Sang HM (2005) Developments in transgenic technology: applications for medicine. Trends Mol Med 11:293–298

    Article  CAS  PubMed  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivarie R (2006) Competitive bioreactor hens on the horizon. Trends Biotechnol 24:99–101

    Article  CAS  PubMed  Google Scholar 

  • Ivics Z, Li MA, Mátés L, Boeke JD, Nagy A, Bradley A, Izsvák Z (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami K, Koga A, Hori H, Shima A (1998) Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225:17–22

    Article  CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong BW, Carlson DF, Fahrenkrug SC, Foster DN (2008) Application of the sleeping beauty transposon system to avian cells. Anim Genet 39:180–186

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA, Ishida I, Robl JM (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa Y, Kasinathan P, Sathiyaseelan T, Jiao JA, Matsushita H, Sathiyaseelan J, Wu H, Mellquist J, Hammitt M, Koster J, Kamoda S, Tachibana K, Ishida I, Robl JM (2009) Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat Biotechnol 27:173–181

    Article  CAS  PubMed  Google Scholar 

  • Kwon SC, Choi JW, Jang HJ, Shin SS, Lee SK, Park TS, Choi IY, Lee GS, Song G, Han JY (2010) Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biol Reprod 82:1057–1064

    Article  CAS  PubMed  Google Scholar 

  • Leighton PA, van de Lavoir MC, Diamond JH, Xia C, Etches RJ (2008) Genetic modification of primordial germ cells by gene trapping, gene targering, and ϕ C31 Integrase. Mol Reprod Dev 75:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Lillico SG, McGrew MJ, Sherman A, Sang HM (2005) Transgenic chickens as bioreactors for protein-based drugs. Drug Discov Today 10:191–196

    Article  CAS  PubMed  Google Scholar 

  • Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous KA, Elliot EA, Sang HM (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA 104:1771–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  CAS  PubMed  Google Scholar 

  • Lonberg N, Taylor LD, Harding FA, Trounstine M, Higgins KM, Schramm SR, Kuo CC, Mashayekh R, Wymore K, McCabe JG et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856–859

    Article  CAS  PubMed  Google Scholar 

  • Lyall J, Irvine RM, Sherman A, McKinley TJ, Núñez A, Purdie A, Outtrim L, Brown IH, Rolleston-Smith G, Sang H, Tiley L (2011) Suppression of avian influenza transmission in genetically modified chickens. Science 331:223–226

    Article  CAS  PubMed  Google Scholar 

  • Macdonald J, Glover JD, Taylor L, Sang HM, McGrew MJ (2010) Characterisation and germline transmission of cultured avian primordial germ cells. PLoS ONE 5:e15518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald J, Taylor L, Sherman A, Kawakami K, Takahashi Y, Sang HM, McGrew MJ (2012) Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci USA 109:1466–1472

    Article  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrew MJ, Sherman A, Ellard FM, Lillico SG, Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang H (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuarai S, Ono K, Yamaguchi K, Nishijima K, Kamihira M, Iijima S (2001) Production of transgenic quails with high frequency of germ-line transmission using VSV-G pseudotyped retroviral vector. Biochem Biophys Res Commun 286:456–463

    Article  CAS  PubMed  Google Scholar 

  • Mozdziak PE, Petitte JN (2004) Status of transgenic chicken models for developmental biology. Dev Dyn 229:414–421

    Article  CAS  PubMed  Google Scholar 

  • Mozdziak PE, Borwornpinyo S, McCoy DW, Petitte JN (2003) Development of transgenic chickens expressing bacterial beta-galactosidase. Dev Dyn 226:439–445

    Article  CAS  PubMed  Google Scholar 

  • Naito M, Tajima A, Tagami T, Yasuda Y, Kuwana T (1994) Preservation of chick primordial germ cells in liquid nitrogen and subsequent production of viable offspring. J Reprod Fertil 102:321–325

    Article  CAS  PubMed  Google Scholar 

  • Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  • Osborn MJ, Ma B, Avis S, Binnie A, Dilley J, Yang X, Lindquist K, Ménoret S, Iscache AL, Ouisse LH, Rajpal A, Anegon I, Neuberger MS, Buelow R, Brüggemann M (2013) High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igκ/Igλ loci bearing the rat CH region. J Immunol 190:1481–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, Samarut J, Etches RJ (1996) Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339–2348

    CAS  PubMed  Google Scholar 

  • Park TS, Han JY (2012) piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci USA 109:9337–9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park TS, Jeong DK, Kim JN, Song GH, Hong YH, Lim JM, Han JY (2003) Improved germline transmission in chicken chimeras produced by transplantation of gonadal primordial germ cells into recipient embryos. Biol Reprod 68:1657–1662

    Article  CAS  PubMed  Google Scholar 

  • Park TS, Lee HJ, Kim KH, Kim JS, Han JY (2014) Targeted gene knockout in chickens mediated by TALENs. PNAS 111:12716–12721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 99:2140–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashidi H, Sottile V (2009) The chick embryo: hatching a model for contemporary biomedical research. BioEssays 31:459–465

    Article  PubMed  Google Scholar 

  • Salter DW, Crittenden LB (1989) Artificial insertion of a dominant gene for resistance to avian leukosis virus into the germ line of the chicken. Theor Appl Genet 77:457–461

    Article  CAS  PubMed  Google Scholar 

  • Salter D, Balander R, Crittenden L (1999) Evaluation of Japanese quail as a model system for avian transgenesis using avian leukosis viruses. Poult Sci 78:230–234

    Article  CAS  PubMed  Google Scholar 

  • Sander JD, Yeh JR, Peterson RT, Joung JK (2011) Engineering zinc finger nucleases for targeted mutagenesis of zebrafish. Methods Cell Biol 104:51–58

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Kasai T, Nakagawa S, Tanabe K, Watanabe T, Kawakami K, Takahashi Y (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305:616–624

    Article  CAS  PubMed  Google Scholar 

  • Schusser B, Collarini EJ, Yi H, Izquierdo SM, Fesler J, Pedersen D, Klasing KC, Kaspers B, Harriman WD, van de Lavoir MC, Etches RJ, Leighton PA (2013) Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. PNAS 110:20170–20175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan C (2014) First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol 32:599–601

    Article  CAS  PubMed  Google Scholar 

  • Shin SS, Kim TM, Kim SY, Kim TW, Seo HW, Lee SK, Kwon SC, Lee GS, Kim H, Lim JM, Han JY (2008) Generation of transgenic quail through germ cell-mediated germline transmission. FASEB J 22:2435–2444

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Choi YM, Han JY, Lee K (2014) Inhibition of lipolysis in the novel transgenic quail model overexpressing G0/G1 switch gene 2 in the adipose tissue during feed restriction. PLoS ONE 9:e100905

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith CA, Sinclair AH (2001) Sex determination in the chicken embryo. J Exp Zool 290:691–699

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Duraisamy S, Ali J, Kizhakkayil J, Jacob VD, Mohammed MA, Eltigani MA, Amisetty S, Shukla MK, Etches RJ, de Lavoir MC (2014) Characteristics of long-term cultures of avian primordial germ cells and gonocytes. Biol Reprod 90:15

    Article  PubMed  Google Scholar 

  • Sung YH, Kim JM, Kim HT, Lee J, Jeon J, Jin Y, Choi JH, Ban YH, Ha SJ, Kim CH, Lee HW, Kim JS (2014) Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res 24:125–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyack SG, Jenkins KA, O’Neil TE, Wise TG, Morris KR, Bruce MP, McLeod S, Wade AJ, McKay J, Moore RJ, Schat KA, Lowenthal JW, Doran TJ (2013) A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Res 22:1257–1264

    Article  CAS  PubMed  Google Scholar 

  • van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ (2006) Germline transmission of genetically modified primordial germ cells. Nature 441:766–769

    Article  PubMed  Google Scholar 

  • Vergara MN, Canto-Soler MV (2012) Rediscovering the chick embryo as a model to study retinal development. Neur Dev. doi:10.1186/1749-8104-7-22

    Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Naito M, Sasaki E, Sakurai M, Kuwana T, Oishi T (1994) Liposome-mediated DNA transfer into chicken primordial germ cells in vivo. Mol Reprod Dev 38:268–274

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Sun P, Yu F, Yan L, Yuan F, Zhang W, Wang T, Wan Z, Shao Q, Li Z (2012) Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels. PLoS ONE 7:e50817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Doran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doran, T.J., Cooper, C.A., Jenkins, K.A. et al. Advances in genetic engineering of the avian genome: “Realising the promise”. Transgenic Res 25, 307–319 (2016). https://doi.org/10.1007/s11248-016-9926-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9926-8

Keywords

Navigation