Skip to main content
Log in

Overexpression and functional characterization of an Aspergillus niger phytase in the fat body of transgenic silkworm, Bombyx mori

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

In a previous study, we isolated 1,119 bp of upstream promoter sequence from Bmlp3, a gene encoding a member of the silkworm 30 K storage protein family, and demonstrated that it was sufficient to direct fat body-specific expression of a reporter gene in a transgenic silkworm, thus highlighting the potential use of this promoter for both functional genomics research and biotechnology applications. To test whether the Bmlp3 promoter can be used to produce recombinant proteins in the fat body of silkworm pupae, we generated a transgenic line of Bombyx mori which harbors a codon-optimized Aspergillus niger phytase gene (phyA) under the control of the Bmlp3 promoter. Here we show that the Bmlp3 promoter drives high levels of phyA expression in the fat body, and that the recombinant phyA protein is highly active (99.05 and 54.80 U/g in fat body extracts and fresh pupa, respectively). We also show that the recombinant phyA has two optimum pH ranges (1.5–2.0 and 5.5–6.0), and two optimum temperatures (55 and 37 °C). The activity of recombinant phyA was lost after high-temperature drying, but treating with boiling water was less harmful, its residual activity was approximately 84 % of the level observed in untreated samples. These results offer an opportunity not only for better utilization of large amounts of silkworm pupae generated during silk production, but also provide a novel method for mass production of low-cost recombinant phytase using transgenic silkworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AOAC Official Method 2000.12 Phytase Activity in Feed (2002) AOAC International

  • Austin S, Bingham ET, Koegel RG, Mathews DE, Shahan MN, Straub RJ, Burgess RR (1994) An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. Ann N Y Acad Sci 721:234–244

    Article  CAS  PubMed  Google Scholar 

  • Berka RM, Rey MW, Brown KM, Byun T, Klotz AV (1998) Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl Environ Microbiol 64:4423–4427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206

    Article  CAS  Google Scholar 

  • Brinch-Pedersen H, Sorensen LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118–125

    Article  CAS  PubMed  Google Scholar 

  • Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110:313–322

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q, Fan Y, Zhao Z, Tarczynski MC, Shi J (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17:633–643

    Article  CAS  PubMed  Google Scholar 

  • Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult Sci 77:878–881

    Article  CAS  PubMed  Google Scholar 

  • Deng D, Xu H, Wang F, Duan X, Ma S, Xiang Z, Xia Q (2013) The promoter of Bmlp3 gene can direct fat body-specific expression in the transgenic silkworm, Bombyx mori. Transgenic Res 22:1055–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson DM, Ullah AH (1988) Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys 260:503–513

    Article  CAS  PubMed  Google Scholar 

  • Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745

    Article  CAS  PubMed  Google Scholar 

  • Greiner R, Konietzny U, Jany K (1993) Purification and characterisation of two phytases from Escherichia coli. Arch Biochem Biophys 303:107–113

    Article  CAS  PubMed  Google Scholar 

  • Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res 13:29–39

    Article  CAS  PubMed  Google Scholar 

  • Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210:630–637

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Shao N, Wang Y, Luo H, Yang P, Zhou Z, Zhan Z, Yao B (2009) A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol 83:249–259

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Kajikawa M, Maenaka K, Park EY (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85:459–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YO, Lee JK, Kim HK, Yu JH, Oh TK (1998) Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett 162:185–191

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Makkar HP, Devappa RK, Becker K (2011) Isolation of phytate from Jatropha curcas kernel meal and effects of isolated phytate on growth, digestive physiology and metabolic changes in Nile tilapia (Oreochromis niloticus L.). Food Chem Toxicol 49:2144–2156

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wang H, Ng TB (2013) Isolation of a phytase with distinctive characteristics from an edible mushroom, Pleurotus eryngii. Protein Pept Lett 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Zeng M, Wu Z, Chen H, Wang H, Wu Q, Shan Z, Han X (2012) Improving phytase enzyme activity in a recombinant phyA mutant phytase from Aspergillus niger N25 by error-prone PCR. Appl Biochem Biotechnol 166(3):549–562

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Tudor S, Butler T, Ge Y, Xi Y, Bouton J, Harrison M, Wang Z (2012) Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicagosativa) leads to improved phosphate uptake in natural soils. Mol Breed 30:377–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mullaney EJ, Daly CB, Ullah AH (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199

    Article  CAS  PubMed  Google Scholar 

  • Mullaney EJ, Locovare H, Sethumadhavan K, Boone S, Lei X, Ullah AH (2010) Site-directed mutagenesis of disulfide bridges in Aspergillus niger NRRL 3135 phytase (PhyA), their expression in Pichia pastoris and catalytic characterization. Appl Microbiol Biotechnol 87(4):1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Nagashima T, Tange T, Anazawa H (1999) Dephosphorylation of phytate by using the Aspergillus niger phytase with a high affinity for phytate. Appl Environ Microbiol 65(10):4682–4684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasamontes L, Haiker M, Wyss M, Tessier M, van Loon AP (1997) Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63:1696–1700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pen J, Verwoerd TC, van Paridon PA, Beudeker RF, van den Elzen RF, Geerse K, van der Klis JD, Versteegh HA, van Ooyen AJ, Hoekema A (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Nat Biotechnol 11:811–814

    Article  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    Article  CAS  PubMed  Google Scholar 

  • Sajidan A, Farouk A, Greiner R, Jungblut P, Müller EC, Borriss R (2004) Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol 65:110–118

    CAS  PubMed  Google Scholar 

  • Schroder B, Breves G, Rodehutscord M (1996) Mechanisms of intestinal phosphorus absorption and availability of dietary phosphorus in pigs. Dtsch Tierarztl Wochenschr 103:209–214

    CAS  PubMed  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  CAS  PubMed  Google Scholar 

  • Ullah AH (1988) Aspergillus ficuum phytase: partial primary structure, substrate selectivity, and kinetic characterization. Prep Biochem 18:459–471

    CAS  PubMed  Google Scholar 

  • Urbano G, Lopez-Jurado M, Aranda P, Vidal-Valverde C, Tenorio E, Porres J (2000) The role of phytic acid in legumes: antinutrient or beneficial function? J Physiol Biochem 56:283–294

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Ikeda H, Masaki K, Fujii T, Iefuji H (2009) Cloning and characterization of a novel phytase from wastewater treatment yeast Hansenula fabianii J640 and expression in Pichia pastoris. J Biosci Bioeng 108:225–230

    Article  CAS  PubMed  Google Scholar 

  • Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R, Oesterhelt G, Lehmann M, van Loon AP (1999) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol 65:359–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Zhang Z, Xu F, Liu JG, Han PL, Chen JM (2006) High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol 72:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Wang X, Wang W, Fu Y, Liang A (2013) Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol Lett 35(10):1669–1676

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Zhao T, Zhang Y, Xia Q, Lu C, Zhou Z, Xiang Z, Nakagaki M (2010a) New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res 19:29–44

    Article  PubMed  Google Scholar 

  • Zhao W, Xiong A, Fu X, Gao F, Tian Y, Peng R (2010b) High level expression of an acid-stable phytase from Citrobacter freundii in Pichia pastoris. Appl Biochem Biotechnol 162:2157–2165

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Long D, Ma S, Xu L, Zhang M, Dai F, Xia Q, Lu C, Xiang Z (2012) Efficient strategies for changing the diapause character of silkworm eggs and for the germline transformation of diapause silkworm strains. Insect Science 19:172–182

    Article  Google Scholar 

  • Zhou M, Guo J, Cha J, Chae M, Chen S, Barral JM, Sachs MS, Liu Y (2013) Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495(7439):111–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Marcé D. Lorenzen of North Carolina State University, USA, for improving this manuscript. This work was supported by the Grant (No. 2012CB114600) from the National Basic Research Program of China, Grant (No. 31000981) from National Natural Science Foundation of China, and Grant (No. CSTC2010BB1144) from the Natural Science Foundation of Chongqing.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helen Beneš or QingYou Xia.

Additional information

Hanfu Xu and Yaowen Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11248_2014_9797_MOESM1_ESM.tif

Fig. S1 Sequence of the codon-optimized A. niger phytase gene. (A) Synthesized nucleotide sequence of the phyA gene. Lower-case letters indicate BamH I and Not I restriction enzyme sites. Underlined sequences indicate the six His-tags. (B) Deduced amino acid sequence of phyA. Putative N-glycosylation sites, active sites of phyA and six His-tags are shown in green, red and yellow color, respectively. (TIFF 3994 kb)

11248_2014_9797_MOESM2_ESM.tif

Fig. S2 Southern blot and insertion analysis of transgenic silkworms. (A) Samples of genomic DNA extracted from G1 transgenic and wild-type silkworms were fully digested with Bgl II (lane 1, control), Bgl II (lane 2) and BamH I (lane 3), and subjected to Southern blot analysis with a DsRed probe. (B) The inverse PCR products (lane 1) was separated on a 1 % agarose gel and visualized by staining with ethidium bromide. (C) The flanking genomic sequences obtained with insertion site TTAA on the piggyBac left arm and piggyBac right arm. The insertion site was located in the Scaffold nscaf416 of Chromosome 14 of a transgenic silkworm. (TIFF 335 kb)

11248_2014_9797_MOESM3_ESM.tif

Fig. S3 Western blot analysis of recombinant phyA in transgenic silkworms. Protein samples were extracted from the fat body of G2 transgenic and wild-type day-2 pupae. The filter was probed using an anti-phyA antibody, then stripped and re-probed using an anti α-tubulin antibody (α-tub). M, protein molecular weight marker; Lane 1, wild-type pupae; Lane 2, transgenic pupae. (TIFF 767 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Liu, Y., Wang, F. et al. Overexpression and functional characterization of an Aspergillus niger phytase in the fat body of transgenic silkworm, Bombyx mori . Transgenic Res 23, 669–677 (2014). https://doi.org/10.1007/s11248-014-9797-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-014-9797-9

Keywords

Navigation