Skip to main content
Log in

Relative quantification in seed GMO analysis: state of art and bottlenecks

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Reliable quantitative methods are needed to comply with current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) and GMO-derived food and feed products with a minimum GMO content of 0.9 %. The implementation of EU Commission Recommendation 2004/787/EC on technical guidance for sampling and detection which meant as a helpful tool for the practical implementation of EC Regulation 1830/2003, which states that “the results of quantitative analysis should be expressed as the number of target DNA sequences per target taxon specific sequences calculated in terms of haploid genomes”. This has led to an intense debate on the type of calibrator best suitable for GMO quantification. The main question addressed in this review is whether reference materials and calibrators should be matrix based or whether pure DNA analytes should be used for relative quantification in GMO analysis. The state of the art, including the advantages and drawbacks, of using DNA plasmid (compared to genomic DNA reference materials) as calibrators, is widely described. In addition, the influence of the genetic structure of seeds on real-time PCR quantitative results obtained for seed lots is discussed. The specific composition of a seed kernel, the mode of inheritance, and the ploidy level ensure that there is discordance between a GMO % expressed as a haploid genome equivalent and a GMO % based on numbers of seeds. This means that a threshold fixed as a percentage of seeds cannot be used as such for RT-PCR. All critical points that affect the expression of the GMO content in seeds are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera M, Querci M, Pastor S, Bellocchi G, Milcamps A, Van den Eede G (2009) Assessing copy number of MON 810 integrations in commercial seed maize varieties by 5′ event-specific real-time PCR validated method coupled to 2-∆∆CT analysis. Food Anal Methods 2:73–79

    Article  Google Scholar 

  • Akiyama H, Sakata K, Kondo K, Tanaka A, Liu MS, Oguchi T, Furui S, Kitta K, Hino A, Teshima R (2008) Individual detection of genetically modified maize varieties in non-identity-preserved maize samples. J Agric Food Chem 56:1977–1983

    Article  PubMed  CAS  Google Scholar 

  • Allnutt TR, Roper K, Thomas C, Hugo S, Kerrins G, Henry C (2005) Detection and traceability technologies to underpin the GM inspectorate. Final report to Defra. Available at: http://www.gm-inspectorate.gov.uk/documents/Detection_and_traceability_report_011205

  • Anklam E, Neumann N (2002) Method development in relation to regulatory requirements for detection of GMOs in the food chain. J AOAC Int 85:754–756

    PubMed  CAS  Google Scholar 

  • Anklam E, Gadani F, Heinze P, Pijnenburg H, Van den Eede G (2002) Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived products. Eur Food Res Technol 214:3–26

    Article  CAS  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond Ser B Biol Sci 181:109–135

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec. 2010). Available at: http://www.kew.org/cvalues/

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B Biol Sci 274:227–274

    Article  CAS  Google Scholar 

  • Bennett MD, Smith JB, Heslop-Harrison JS (1982) Nuclear DNA amounts in angiosperms. Proc R Soc Lond Ser B Biol Sci 216:179–199

    Article  CAS  Google Scholar 

  • Block A, Schwarz G (2003) Validation of different genomic and cloned DNA calibration standards for construct-specific quantification of LibertyLink in rapeseed by real-time PCR. Eur Food Res Technol 216:421–427

    CAS  Google Scholar 

  • Belgian Science Policy (2005) Scientific support plan for a sustainable development policy (SPSD II). Tracing and authentication of GMOs and derived products in the food-processing area. OSTC intermediate scientific report, CONTRACT CP42/322. Belgian Science Policy, Brussels

  • Caprioara-Buda M, Meyer W, Jeynov B, Corbisier P, Trapmann S, Emons H (2012) Evaluation of plasmid and genomic DNA calibrants used for the quantification of genetically modified organisms. Anal Bioanal Chem 44:29–42

    Google Scholar 

  • Chaouachi M, Giancola Sandra, Romaniuk Marcel, Laval Valérie, Bertheau Yves, Brunel Dominique (2007) A strategy for designing multi-taxa specific reference gene systems. example of application–ppi phosphofructokinase (ppi-PPF) used for the detection and quantification of three taxa: maize (Zea mays), cotton (Gossypium hirsutum) and rice (Oryza sativa). J Agric Food Chem 55:8003–8010

    Article  PubMed  CAS  Google Scholar 

  • Chaouachi M, El Malki Redouane, Berard Aurélie, Romaniuk Marcel, Laval Valérie, Brunel Dominique, Bertheau Yves (2008) Development of a real-time pcr method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena) and pepper (Capsicum annuum). J Agric Food Chem 56:1818–1828

    Article  PubMed  CAS  Google Scholar 

  • Dalla Costa L, Martinelli L (2007) Development of a real-time PCR method based on duplo target plasmids for determining an unexpected genetically modified soybean intermix with feed components. J Agric Food Chem 55:1264–1273

    Google Scholar 

  • Ding J, Jia J, Yang L, Wen H, Zhang C, Liu W, Zhang D (2004) Validation of a rice-specific gene, sucrose-phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. J Agric Food Chem 52:3372–3377

    Article  PubMed  CAS  Google Scholar 

  • Doerschug EB, Miksche JP, Palmer RG (1978) DNA content, ribosomal RNA gene number, and protein content in soybeans. Can J Genet Cytol 20:531–538

    CAS  Google Scholar 

  • European Commission (EC) (2004) Recommendation 2004/787/EC of 4 October 2004 on technical guidance for sampling and detection of genetically modified organisms and material produced from genetically modified organisms as or in products in the context of Regulation (EC) No 1830/2003. Off J Eur Union L 348:18–26

  • European Commission (EC) (2004) Regulation 641/2004 of 6 April 2004 on detailed rules for the implementation of Regulation (EC) 1829/2003 of the European Parliament and of the Council as regards the application for the authorisation of new genetically modified food and feed, the notification of existing products and adventitious or technically unavoidable presence of genetically modified material which has benefitted from a favourable risk evaluation. Off J Eur Commun L 102:14–25

    Google Scholar 

  • European Commission (EC) (2003) Regulation No 1829/2003 of the European Parliament and of the council of 22 September 2003 on genetically modified food and feed. Off J Eur Union L 268:1–23

  • European Commission (EC) (2003) Regulation No 1830/2003 of the European Parliament and of the council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from GMOs and amending directive 2001/18/EC. Off J Eur Union L 268:24–28

  • Ferré F, Marchese A, Pezzoli P, Griffin S, Buxton E, Boyer V (1994) Quantitative PCR: an overview. In: Mullis KB, Ferre F, Gibbs RA (eds) The polymerase chain reaction. Birkhauser, Boston, pp 77–88

    Google Scholar 

  • Francis DM, Hulbert SH, Michelmore RW (1990) Genome size and complexity of the obligate fungal pathogen, Bremia lactucae. Exp Mycol 14:299–309

    Article  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB (1978) DNA sequence organization in the soybean plant. Biochem Genet 16:45–68

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J (1988) “Self-tanning”—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158:87–96

    Article  CAS  Google Scholar 

  • Grohmann L, Maede D (2009) Detection of genetically modified rice: collaborative validation study of a construct-specific real-time PCR method for detection of transgenic Bt rice Eur. Food Res Technol 228:497–500

    Article  CAS  Google Scholar 

  • Guo J, Yang L, Liu X, Zhang H, Qian B, Zhang D (2009) Applicability of the chymopapain gene used as endogenous reference gene for transgenic huanong no. 1 papaya detection. J Agric Food Chem 57:6502–6509

    Article  PubMed  CAS  Google Scholar 

  • Hake S, Walbot V (1980) The genome of Zea mays, its organization and homology to related grasses. Chromosoma 79:251–270

    Article  CAS  Google Scholar 

  • Hendrix B, Stewart JM (2005) Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95:789–797

    Article  PubMed  CAS  Google Scholar 

  • Hernandez M, Ferrando A, Esteve T, Puigdomenech P, Prat S, Pla M (2003) Real-time and conventional polymerase chain reaction systems based on the metallo-carboxypeptidase inhibitor gene for specific detection and quantification of potato and tomato in processed food. J Food Prot 66:1063–1070

    PubMed  CAS  Google Scholar 

  • Hernandez M, Duplan MN, Berthier G, Vaitilingom M, Hauser W, Freyer R, Pla M, Bertheau Y (2004) Development and comparison of four real-time polymerase chain reaction systems for specific detection and quantification of Zea mays. J Agric Food Chem 52:4632–4637

    Article  PubMed  CAS  Google Scholar 

  • Hernandez M, Esteve T, Pla M (2005) Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat. J Agric Food Chem 53:7003–7009

    Article  PubMed  CAS  Google Scholar 

  • Hernandez M, Rodrıguez-Lazaro D, Ferrando A (2012) Current methodology for detection, identification and quantification of genetically modified organisms. Curr Anal Chem 1(2):203–221

    Article  Google Scholar 

  • Hernández M, Río A, Esteve T, Prat S, Pla M (2001) A rapeseed-specific gene, acetyl-CoA carboxylase, can be used as a reference for qualitative and real-time quantitative PCR detection of transgenes from mixed food samples. J Agric Food Chem 49:3622–3627

    Article  PubMed  Google Scholar 

  • Holst-Jensen A, Berdal KG (2004) The modular analytical procedure and validation approach and the units of measurement for genetically modified materials in foods and feeds. J AOAC Int 87:1–9

    Google Scholar 

  • Holst-Jensen A, Ronning SB, Sovseth A, Berdal KG (2003) PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal Bioanal Chem 375:985–993

    PubMed  CAS  Google Scholar 

  • Holst-Jensen A, De Loose M, Van den Eede G (2006) Coherence between legal requirements and approaches for detection of genetically modified organisms (GMOs) and their derived products. J Agric Food Chem 54:2799–2809

    Article  PubMed  CAS  Google Scholar 

  • Hülgenhof E, Weidhase RA, Schlegel R, Tewes A (1988) Flow cytometric determination of DNA content in isolated nuclei of cereals. Genome 30:565–569

    Google Scholar 

  • Ingle J, Sinclair J (1972) Ribosomal RNA genes and plant development. Nature 235:30–32

    Article  PubMed  CAS  Google Scholar 

  • International Organization for Standardization (ISO) (2005) ISO 21569 foodstuffs—methods of analysis for the detection of genetically modified organisms and derived products (2005)—Qualitative nucleic acid based methods. ISO 21569:1–69

    Google Scholar 

  • International Organization for Standardization (ISO) (2005) 21570 foodstuffs—methods of analysis for the detection of genetically modified organisms and derived products (2005)—quantitative nucleic acid based methods. ISO 21570:1–103

    Google Scholar 

  • James C (2012) Preview: Global status of commercialized transgenic crops. ISAAA Brief 43. International Service for the Acquisition of Agri-Biotech Applications, Manila, Philippines

  • James D, Schmidt AM, Wall E, Green M, Masri S (2003) Reliable detection and identification of genetically modified maize, soybean and canola by multiplex PCR analysis. J Agric Food Chem 51:5829–5834

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Yang L, Zhang H, Guo J, Mazzara M, Van den Eede G, Zhang D (2009) International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice. J Agric Food Chem 57:3525–3532

    Article  PubMed  CAS  Google Scholar 

  • Kay S, Van den Eede G (2001) The limits of GMO detection. Nat Biotechnol 19:405

    Article  PubMed  CAS  Google Scholar 

  • Khoo SP, Cheah YK, Son R (2011) The used of recombinant plasmid DNA in GMO quantitative analysis of insect resistance maize targeted unapproved StarLink corn and approved Bt176 corn in food and feed sold commercially sold Malaysia. Int Food Res J 18:167–178

    CAS  Google Scholar 

  • Kowles RV, Phillips RL (1985) DNA amplification patterns in maize endosperm nuclei during kernel development. Proc Natl Acad Sci USA 82:7010–7014

    Article  PubMed  CAS  Google Scholar 

  • Kuribara H, Shindo Y, Matsuoka T, Takubo K, Futo S, Aoki N, Hirao T, Akiyama H, Goda Y, Toyoda M, Hino A (2002) Novel reference molecules for quantitation of genetically modified maize and soybean. J AOAC Int 85:1077–1089

    PubMed  CAS  Google Scholar 

  • Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814

    Article  PubMed  CAS  Google Scholar 

  • Li X, Pan L, Li J, Zhang Q, Zhang S, Lv R, Yang L (2011) Establishment and application of event-specific polymerase chain reaction methods for two genetically modified soybean events, A2704–12 and A5547–127. J Agric Food Chem 59:13188–13194

    Article  PubMed  CAS  Google Scholar 

  • Lievens A, Bellocchi G, De Bernardi D, Moens W, Savini C, Mazzara M, Van den Eede G, Van den Bulcke M (2010) Use of pJANUS-02-001 as a calibrator plasmid for Roundup Ready soybean event GTS-40-3-2 detection: an interlaboratory trial assessment. Anal Bioanal Chem 396:2165–2173

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Shen J, Yang J, Zhang D (2010) Evaluation of the impacts of different nuclear DNA content in the hull, endosperm, and embryo of rice seeds on GM rice quantification. J Agric Food Chem 58:4582–4587

    Article  PubMed  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development and function. Plant Cell 5:1383–1389

    PubMed  CAS  Google Scholar 

  • Mano J, Yanaka Y, Ikezu Y, Onishi M, Futo S, Minegishi Y, Ninomiya K, Yotsuyanagi Y, Spiegelhalter F, Akiyama H, Teshima R, Hino A, Naito S, Koiwa T, Takabatake R, Furui S, Kitta K (2009) Practicable group testing method to evaluate weight/weight GMO content in maize grains. J Agric Food Chem 59:6856–6863

    Article  Google Scholar 

  • Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51

    Article  PubMed  CAS  Google Scholar 

  • Mattarucchi E, Weighardt F, Barbati C, Querci M, Van den Eede G (2005) Development and applications of real-time PCR standards for GMO quantification based on tandem-marker plasmids. Eur Food Res Technol 221:511–519

    Article  CAS  Google Scholar 

  • Mayer F, Haase I, Graubner A, Heising F, Paschke-Kratzin A, Fischer M (2012) Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. J Agric Food Chem 60:1350–1357

    Article  PubMed  CAS  Google Scholar 

  • Mayu I, Satomi Y, Hirohito Y, Katsuyuki H, Hideo K, Takashi K, Satoshi F, Hiroshi A, Tamio M, Akhihiro H (2005) Development of taxon-specific sequences of common wheat for the detection of genetically modified wheat. J Agric Food Chem 53:6294–6300

    Article  Google Scholar 

  • Mazzara M, Cordeil S, Van Den Eede G (2006) Report on the Verification of an event-specific detection method for identification of rice GM-event LLRICE601 using a real-time PCR assay. Available at: http://gmo-crl.jrc.ec.europa.eu

  • Mbongolo Mbella EG, Lievens A, Barbau-Piednoir E, Sneyers M, Leunda-Casi A, Roosens N, Van den Bulcke M (2010) SYBR_Green qPCR methods for detection of endogenous reference genes in commodity crops: a step ahead in combinatory screening of genetically modified crops in food and feed products. Eur Food Res Technol 232:485–496

    Article  Google Scholar 

  • Meng Y, Liu X, Wang S, Zhang D, Yang L (2012) Applicability of plasmid calibrant pTC1507 in quantification of TC1507 maize: an interlaboratory study. J Agric Food Chem 60:23–28

    Article  PubMed  CAS  Google Scholar 

  • Nagl W, Jeanjour M, Kling H, Kuhner S, Michels I, Muller T, Stein B (1983) Genome and chromatin organization in higher plants. Biol Zentralbl 102:129–148

    CAS  Google Scholar 

  • Njontie C, Foueillassar X, Christov NK, Hüsken K (2011) The impact of GM seed admixture on the non-GM harvest product in maize (Zea mays L.) 180:63–172. Euphytica 180:163–172

  • Pan L, Zhang S, Yang L, Broll H, Tian F, Zhang D (2007) Interlaboratory trial validation of an event-specific qualitative polymerase chain reaction-based detection method for genetically modified RT73 rapeseed. J AOAC Int 90:1639–1646

    PubMed  CAS  Google Scholar 

  • Papazova N, Malef A, Degrieck I, Van Bockstaele E, De Loose M (2005) DNA extractability from the maize embryo and endosperm—relevance to GMO assessment in seed samples. Seed Sci Technol 33:533–542

    Google Scholar 

  • Papazova N, Zhang D, Gruden K, Vojvoda J, Yang L, Gašparič MB, Blejec M, Fouilloux S, De Loose M, Taverniers I (2010) Evaluation of the reliability of maize reference assays for GMO quantification. Anal Bioanal Chem 396:2189–2201

    Article  PubMed  CAS  Google Scholar 

  • Rho JK, Lee T, Jung SI, Kim TS, Park YH, Kim YM (2004) Qualitative and quantitative PCR methods for detection of three lines of genetically modified potatoes. J Agric Food Chem 52:3269–3274

    Article  PubMed  CAS  Google Scholar 

  • Roldan-Ruiz I, Taverniers I, De Loose M (2001) Statistical considerations concerning sampling strategies for detection of GMOs in grains. Contract no 18393–2001-09 F1SEI ISP BE by order of EC-DG JRC. Department for Plant Genetics and Breeding, DvP-CLO, Melle

    Google Scholar 

  • Rønning SB, Berdal KG, Andersen CB, Holst-Jensen A (2006) Novel reference gene, PKABA1, used in a duplex real-time polymerase chain reaction for detection and quantitation of wheat- and barley-derived DNA. J Agric Food Chem 54:682–687

    Article  PubMed  Google Scholar 

  • Ruttink T, Demeyer R, Van Gulck E, Van Droogenbroeck B, Querci M, Taverniers I, De Loose M (2010) Molecular toolbox for the identification of unknown genetically modified organisms. Anal Bioanal Chem 396:2073–2089

    Article  PubMed  CAS  Google Scholar 

  • Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321

    Article  PubMed  CAS  Google Scholar 

  • Schweizer L, Yerk-Davis GL, Phillips RL, Srienc F, Jones RJ (1995) Dynamics of maize endosperm development and DNA endoreduplication. Proc Natl Acad Sci USA 92:7070–7074

    Article  PubMed  CAS  Google Scholar 

  • Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada C, Shono J, Akiyama H, Goda Y, Toyoda M, Hino A (2002) Validation of real-time PCR analyses for line-specific quantitation of genetically modified maize and soybean using new reference molecules. J AOAC Int 85:1119–1126

    CAS  Google Scholar 

  • Taverniers I, Van Bockstaele E, De Loose M (2004) Cloned plasmid DNA fragments as calibrators for controlling GMOs, different real-time duplex quantitative PCR methods. Anal Bioanal Chem 378:1198–1207

    Article  PubMed  CAS  Google Scholar 

  • Taverniers I, Windels P, Vaitilingom M, Milcamps A, Van Bockstaele E, Van den Eede G, De Loose M (2005) Event-specific plasmid standards and real-time PCR methods for transgenic Bt11, Bt176, and GA21 maize and transgenic GT73 canola. J Agric Food Chem 53:3041–3052

    Article  PubMed  CAS  Google Scholar 

  • Trapmann S, Corbisier P, Schimmel H, Emons H (2010) Towards future reference systems for GM analysis. Anal Bioanal Chem 396:1969–1975

    Article  PubMed  CAS  Google Scholar 

  • Trevor W, Alexander W, Reuter T, Mcallister T (2007) Qualitative and quantitative polymerase chain reaction assays for an alfalfa (Medicago sativa)-specific reference gene to use in monitoring transgenic cultivars. J Agric Food Chem 55:2918–2922

    Article  Google Scholar 

  • Trifa Y, Zhang D (2004) DNA content in embryo and endosperm of maize kernel (Zea mays L.): impact on GMO quantification. J Agric Food Chem 52:1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Van den Eede G, Kay S, Anklam E, Schimmel H (2002) Analytical challenges: bridging the gap from regulation to enforcement. J AOAC Int 85:757–761

    PubMed  Google Scholar 

  • Van Duijn G, van Biert R, Bleeker-Mercelis H, van Boeijen I, Adan AJ, Jhakrie S, Hessing M (2002) Detection of genetically modified organisms in foods by protein- and DNA-based techniques: bridging the methods. J AOAC Int 85:787–791

    PubMed  Google Scholar 

  • Van’t HofJ (1965) Relationships between mitotic cycle duration S period duration and average rate of DNA synthesis in root meristem cells of several plants. Exp Cell Res 39:48–58

    Article  Google Scholar 

  • Walbot V, Dure LS (1976) Developmental biochemistry of cotton seed embryogenesis and germination. VII. Characterization of the cotton genome. J Mol Biol 101:503–536

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Jiang L, Rao J, Liu Y, Yang L, Zhang D (2010) Evaluation of four genes in rice for their suitability as endogenous reference standards in quantitative PCR. J Agric Food Chem 58:11543–11547

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Kuribara H, Mishima T, Kituchi H, Kodama T, Futo S, Kasama K, Toyota A, Nouno M, Saita A, Takahashi K, Hino A, Akiyama H, Maitani T, Kubo M (2004) New qualitative detection methods of genetically modified potatoes. Biol Pharm Bull 27:1333–1339

    Article  PubMed  CAS  Google Scholar 

  • Weng H, Yang L, Liu Z, Ding J, Pan A, Zhang D (2005) Novel reference gene, High-mobility-group protein I/Y, used in qualitative and real-time quantitative polymerase chain reaction detection of transgenic rapeseed cultivars. J AOAC Int 88:577–584

    PubMed  CAS  Google Scholar 

  • When-Tao X, Kun-Lun H, Ying W, Hong-Xing Z, Yun-Bo L (2006) A cotton-specific gene, stearoyl-ACP desaturase, used as a reference gene for qualitative and quantitative polymerase chain reaction detection of genetically modified organisms. J Sci Food Agric 86:1103–1109

    Article  Google Scholar 

  • Wiseman G (2002) State of the art and limitations of quantitative polymerase chain reaction. J AOAC Int 85:792–796

    PubMed  CAS  Google Scholar 

  • Yang L, Jianxu C, Huang C, Liu Y, Jia S, Pan L, Zhang D (2005) Validation of a cotton–specific gene, sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Plant Cell Rep 24:237–245

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Guo J, Pan A, Zhang H, Zhang K, Wang Z, Zhang D (2007) Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. J Agric Food Chem 55:15–24

    Article  PubMed  Google Scholar 

  • Žel J, Mazzara M, Savini C, Cordeil S, Camloh M, Štebih D, Cankar K, Gruden K, Morisset D, Van den Eede G (2008) Method validation and quality management in the flexible scope of accreditation: an example of laboratories testing for genetically modified organisms. Food Anal Methods 1:61–72

    Article  Google Scholar 

  • Zhang D, Corlet A, Fouilloux S (2008a) Impact of genetic structures on haploid genome-based quantification of genetically modified DNA: theoretical considerations, experimental data in MON 810 maize kernels (Zea mays L.) and some practical applications. Transgenic Res 17:393–402

    Article  PubMed  Google Scholar 

  • Zhang H, Yang L, Guo J, Li X, Jiang L, Zhang D (2008b) Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of roundup ready soybean. J Agric Food Chem 56:5514–5520

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL, Goldberg RB (1977) DNA sequence organization in the genome of Nicotiana tabacum. Chromosoma 59:227–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Chaouachi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaouachi, M., Bérard, A. & Saïd, K. Relative quantification in seed GMO analysis: state of art and bottlenecks. Transgenic Res 22, 461–476 (2013). https://doi.org/10.1007/s11248-012-9684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9684-1

Keywords

Navigation