Skip to main content
Log in

Transgenic studies on homeobox genes in nervous system development: spina bifida in Isl1 transgenic mice

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

To develop in vivo assays for homeobox gene function in neural development, we generated transgenic mice in which the expression of a homeobox gene is altered only within the nervous system, in neurons or neuronal precursor cells. Transgenic expression of Hoxc8 did not result in gross abnormalities, while a Hoxd4 transgene caused death shortly after birth. In neural progenitor cells, the motorneuron-specific homeodomain transcription factor Isl1 induced early developmental defects, including absence of anterior neural structures, profound defects in the neuroepithelium and defective neural tube closure. A fraction of Isl1 transgenic mice exhibited spina bifida. Isl1 transgene expression was also associated with decreased proliferation and increased Pbx1 expression in the ventral neural tube. Our results suggest a function for some homeobox genes in development of the nervous system, and that cell-type- and region-specific transgenic models will be useful to identify the cellular and molecular targets of homeobox transcription factors in nervous system development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amirthalingam GS, Howard S, Alvarez S, de Lera AR, Itasaki N (2009) Regulation of Hoxb4 induction after neurulation by somite signal and neural competence. BMC Dev Biol 9:17. doi:10.1186/1471-213X-9-17

    Article  PubMed  Google Scholar 

  • Asahara H, Dutta S, Kao HY, Evans RM, Montminy M (1999) Pbx-Hox heterodimers recruit coactivator-corepressor complexes in an isoform-specific manner. Mol Cell Biol 19:8219–8225

    PubMed  CAS  Google Scholar 

  • Asli NS, Kessel M (2010) Spatiotemporally restricted regulation of generic motor neuron programs by miR-196-mediated repression of Hoxb8. Dev Biol 344:857–868. doi:10.1016/j.ydbio.2010.06.003

    Article  PubMed  CAS  Google Scholar 

  • Awgulewitsch A, Jacobs D (1990) Differential expression of Hox 3.1 protein in subregions of the embryonic and adult spinal cord. Development 108:411–420

    PubMed  CAS  Google Scholar 

  • Breier G, Dressler GR, Gruss P (1988) Primary structure and developmental expression pattern of Hox 3.1, a member of the murine Hox 3 homeobox gene cluster. EMBO J 7:1329–1336

    PubMed  CAS  Google Scholar 

  • Brendolan A, Rosado MM, Carsetti R, Selleri L, Dear TN (2007) Development and function of the mammalian spleen. BioEssays 29:166–177. doi:10.1002/bies.20528

    Article  PubMed  CAS  Google Scholar 

  • Byrne GW, Ruddle FH (1989) Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci USA 86:5473–5477

    Article  PubMed  CAS  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of hox-a1 (hox-1.6) function results in the reorganization of the murine hindbrain. Development 118:1063–1075

    PubMed  CAS  Google Scholar 

  • Chang CP, Brocchieri L, Shen WF, Largman C, Cleary ML (1996) Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus. Mol Cell Biol 16:1734–1745

    PubMed  CAS  Google Scholar 

  • Dasen JS, Jessell TM (2009) Hox networks and the origins of motor neuron diversity. Curr Top Dev Biol 88:169–200. doi:10.1016/S0070-2153(09)88006-X

    Article  PubMed  CAS  Google Scholar 

  • Dasen JS, Tice BC, Brenner-Morton S, Jessell TM (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123:477–491. doi:10.1016/j.cell.2005.09.009

    Article  PubMed  CAS  Google Scholar 

  • Dedera DA, Waller EK, LeBrun DP, Sen MA, Stevens ME, Barsh GS, Cleary ML (1993) Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell 74:833–843

    Article  PubMed  CAS  Google Scholar 

  • Di Rocco G, Mavilio F, Zappavigna V (1997) Functional dissection of a transcriptionally active, target-specific Hox-Pbx complex. EMBO J 16:3644–3654. doi:10.1093/emboj/16.12.3644

    Article  PubMed  Google Scholar 

  • Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL (2004) Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131:3931–3942

    Article  PubMed  CAS  Google Scholar 

  • Du A, Hunter CS, Murray J, Noble D, Cai CL, Evans SM, Stein R, May CL (2009) Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes 58:2059–2069. doi:10.2337/db08-0987

    Article  PubMed  CAS  Google Scholar 

  • Ensini M, Tsuchida TN, Belting HG, Jessell TM (1998) The control of rostrocaudal pattern in the developing spinal cord: specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm. Development 125:969–982

    PubMed  CAS  Google Scholar 

  • Ericson J, Thor S, Edlund T, Jessell TM, Yamada T (1992) Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1. Science 256:1555–1560

    Article  PubMed  CAS  Google Scholar 

  • Folberg A, Kovacs EN, Huang H, Houle M, Lohnes D, Featherstone MS (1999) Hoxd4 and Rarg interact synergistically in the specification of the cervical vertebrae. Mech Dev 89:65–74. doi:S0925-4773(99)00203-8

    Article  PubMed  CAS  Google Scholar 

  • Frohman MA (1993) Rapid amplification of complementary DNA end for the generation of full-length complementary DNAs: thermal RACE. Methods Enzymol 218:340–356

    Article  PubMed  CAS  Google Scholar 

  • Gardner DP, Kappen C (2000) Developmental characterization and chromosomal mapping of a LacZ transgene expressed in the mouse apical ectodermal ridge. J Exp Zool 287:106–111

    Article  PubMed  CAS  Google Scholar 

  • Gardner DP, Byrne GW, Ruddle FH, Kappen C (1996) Spatial and temporal regulation of a LacZ reporter transgene in a binary transgenic mouse system. Transg Res 5:37–48

    Article  CAS  Google Scholar 

  • Guidato S, Prin F, Guthrie S (2003) Somatic motoneurone specification in the hindbrain: the influence of somite-derived signals, retinoic acid and Hoxa3. Development 130:2981–2996

    Article  PubMed  CAS  Google Scholar 

  • Hoch RV, Rubenstein JL, Pleasure S (2009) Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol 20:378–386. doi:10.1016/j.semcdb.2009.02.005

    Article  PubMed  CAS  Google Scholar 

  • Hogan B, Beddington R, Costantini F, Lacy E (1994) Manipulating the mouse embryo: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Horan GS, Kovacs EN, Behringer RR, Featherstone MS (1995a) Mutations in paralogous Hox genes result in overlapping homeotic transformations of the axial skeleton: evidence for unique and redundant function. Dev Biol 169:359–372

    Article  PubMed  CAS  Google Scholar 

  • Horan GS, Ramirez-Solis R, Featherstone MS, Wolgemuth DJ, Bradley A, Behringer RR (1995b) Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev 9:1667–1677

    Article  PubMed  CAS  Google Scholar 

  • Jung H, Lacombe J, Mazzoni EO, Liem KF Jr, Grinstein J, Mahony S, Mukhopadhyay D, Gifford DK, Young RA, Anderson KV, Wichterle H, Dasen JS (2010) Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 67:781–796. doi:10.1016/j.neuron.2010.08.008

    Article  PubMed  CAS  Google Scholar 

  • Kamel S, Kruger C, Salbaum JM, Kappen C (2009) Morpholino-mediated knockdown in primary chondrocytes implicates Hoxc8 in regulation of cell cycle progression. Bone 44:708–716. doi:10.1016/j.bone.2008.10.057

    Article  PubMed  CAS  Google Scholar 

  • Kappen C, Salbaum JM (2009) Identification of regulatory elements in the Isl1 gene locus. Int J Dev Biol 53:935–946. doi:10.1387/ijdb.082819ck

    Article  PubMed  CAS  Google Scholar 

  • Kappen C, Mello MA, Finnell RH, Salbaum JM (2004) Folate modulates cartilage defects in Hoxd-4 transgenic mice. Genesis 39:115–166

    Article  Google Scholar 

  • Karlsson O, Thor S, Norberg T, Ohlsson H, Edlund T (1990) Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 344:879–882

    Article  PubMed  CAS  Google Scholar 

  • Keynes R, Krumlauf R (1994) Hox genes and regionalization of the nervous system. Ann Rev Neurosci 17:109–132

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Selleri L, Lee JS, Zhang AY, Gu X, Jacobs Y, Cleary ML (2002) Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat Genet 30:430–435

    Article  PubMed  CAS  Google Scholar 

  • Krosl J, Baban S, Krosl G, Rozenfeld S, Largman C, Sauvageau G (1998) Cellular proliferation and transformation induced by HOXB4 and HOXB3 proteins involves cooperation with PBX1. Oncogene 16:3403–3412. doi:10.1038/sj.onc.1201883

    Article  PubMed  CAS  Google Scholar 

  • Krosl J, Beslu N, Mayotte N, Humphries RK, Sauvageau G (2003) The competitive nature of HOXB4-transduced HSC is limited by PBX1: the generation of ultra-competitive stem cells retaining full differentiation potential. Immunity 18:561–571. doi:S1074761303000906

    Article  PubMed  CAS  Google Scholar 

  • Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19(15):4293

    Article  PubMed  CAS  Google Scholar 

  • LeMouellic H, Condamine H, Brulet P (1988) Pattern of transcription of the homeo gene Hox-3.1 in the mouse embryo. Genes Dev 2(1):125–135

    Article  CAS  Google Scholar 

  • LeMouellic H, Lallemand Y, Brulet P (1992) Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 69:251–264

    Article  CAS  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  PubMed  CAS  Google Scholar 

  • Leonard J, Serup P, Gonzalez G, Edlund T, Montminy M (1992) The LIM family transcription factor Isl-1 requires cAMP response element binding protein to promote somatostatin expression in pancreatic islet cells. Proc Natl Acad Sci USA 89:6247–6251

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Averboukh L, Pardee AB (1993) Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res 21:3269–3275

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Hunter CS, Du A, Ediger B, Walp E, Murray J, Stein R, May CL (2011) Islet-1 regulates Arx transcription during pancreatic islet alpha-cell development. J Biol Chem 286:15352–15360. doi:10.1074/jbc.M111.231670

    Article  PubMed  CAS  Google Scholar 

  • Lloret-Vilaspasa F, Jansen HJ, de Roos K, Chandraratna RA, Zile MH, Stern CD, Durston AJ (2010) Retinoid signalling is required for information transfer from mesoderm to neuroectoderm during gastrulation. Int J Dev Biol 54:599–608. doi:10.1387/ijdb.082705fl

    Article  PubMed  CAS  Google Scholar 

  • Lufkin T, Mark M, Hart CP, Dolle P, LeMeur M, Chambon P (1992) Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359:835–841

    Article  PubMed  CAS  Google Scholar 

  • Mark M, Lufkin T, Vonesch J-L, Ruberte E, Olivo J-C, Dolle P, Gorry P, Lumsden A, Chambon P (1993) Two rhombomeres are altered in Hox-a1 mutant mice. Development 119:319–338

    PubMed  CAS  Google Scholar 

  • McGlinn E, Yekta S, Mansfield JH, Soutschek J, Bartel DP, Tabin CJ (2009) In ovo application of antagomiRs indicates a role for miR-196 in patterning the chick axial skeleton through Hox gene regulation. Proc Natl Acad Sci USA 106:18610–18615. doi:10.1073/pnas.0910374106

    Article  PubMed  CAS  Google Scholar 

  • Muller YL, Yueh YG, Yaworsky PJ, Salbaum JM, Kappen C (2003) Caudal dysgenesis in Isl-1 in transgenic mice. FASEB J 17:1349–1351

    PubMed  CAS  Google Scholar 

  • Nolte C, Amores A, Nagy Kovacs E, Postlethwait J, Featherstone M (2003) The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes. Mech Dev 120:325–335. doi:S0925477302004422

    Article  PubMed  CAS  Google Scholar 

  • Omelchenko N, Lance-Jones C (2003) Programming neural Hoxd10: in vivo evidence that early node-associated signals predominate over paraxial mesoderm signals at posterior spinal levels. Dev Biol 261:99–115. doi:S001216060300280X

    Article  PubMed  CAS  Google Scholar 

  • Pfaff SL (2008) Developmental neuroscience: Hox and Fox. Nature 455:295–297. doi:10.1038/455295a

    Article  PubMed  CAS  Google Scholar 

  • Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM (1996) Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84:309–320

    Article  PubMed  CAS  Google Scholar 

  • Pollock RA, Jay G, Bieberich CJ (1992) Altering the boundaries of Hox3.1 expression: evidence for antipodal gene regulation. Cell 71:911–923

    Article  PubMed  CAS  Google Scholar 

  • Pöpperl H, Bienz M, Studer M, Chan SK, Aparicio S, Brenner S, Mann RS, Krumlauf R (1995) Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81:1031–1042

    Article  PubMed  Google Scholar 

  • Rundle CH, Macias MP, Gardner DP, Yueh YG, Kappen C (1998) Transactivation of Hox gene expression in a VP16-dependent binary transgenic mouse system. Biochim Biophys Acta 1398:164–178

    Article  PubMed  CAS  Google Scholar 

  • Salbaum JM (1998) Punc, a novel mouse gene of the immunoglobulin superfamily, is expressed predominantly in the developing nervous system. Mech Dev 71:201–204

    Article  PubMed  CAS  Google Scholar 

  • Salbaum JM, Ruddle FH (1994) Embryonic expression pattern of amyloid protein precursor suggests a role in differentiation of specific subsets of neurons. J Exp Zool 269:116–127

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Shashikant CS, Utset MF, Violette SM, Wise TL, Einat P, Einat M, Pendleton JW, Schughart K, Ruddle FH (1991) Homeobox genes in mouse development. Crit Rev Eukar Gene Expr 1:207–245

    CAS  Google Scholar 

  • Studer M, Lumsden A, Ariza-McNaughton L, Bradley A, Krumlauf R (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384:630–634

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Dykes IM, Liang X, Eng SR, Evans SM, Turner EE (2008) A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat Neurosci 11:1283–1293. doi:10.1038/nn.2209

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K, Heidt AB, Mori AD, Arruda EP, Gertsenstein M, Georges R, Davidson L, Mo R, Hui CC, Henkelman RM, Nemer M, Black BL, Nagy A, Bruneau BG (2005) Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development 132:2463–2474. doi:10.1242/dev.01827

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Jessell TM (1996) Diversity and pattern in the developing spinal cord. Science 274:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Tiret L, Le Mouellic H, Maury M, Brulet P (1998) Increased apoptosis of motoneurons and altered somatotopic maps in the brachial spinal cord of Hoxc-8-deficient mice. Development 125:279–291

    PubMed  CAS  Google Scholar 

  • Tuggle CK, Zakany J, Cianetti L, Peschle C, Nguyen-Huu MC (1990) Region-specific enhancers near two mammalian homeo box genes define adjacent rostrocaudal domains in the central nervous system. Genes Dev 4:180–189

    Article  PubMed  CAS  Google Scholar 

  • Utset MF, Awgulewitsch A, Ruddle FH, McGinnis W (1987) Region-specific expression of two mouse homeo box genes. Science 235:1379–1382

    Article  PubMed  CAS  Google Scholar 

  • Vermot J, Schuhbaur B, Le Mouellic H, McCaffery P, Garnier JM, Hentsch D, Brulet P, Niederreither K, Chambon P, Dolle P, Le Roux I (2005) Retinaldehyde dehydrogenase 2 and Hoxc8 are required in the murine brachial spinal cord for the specification of Lim1 + motoneurons and the correct distribution of Islet1 + motoneurons. Development 132:1611–1621. doi:10.1242/dev.01718

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Drucker DJ (1995) The LIM domain homeobox gene isl-1 is a positive regulator of islet cell-specific proglucagon gene transcription. J Biol Chem 270:12646–12652

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Drucker DJ (1996) Activation of amylin gene transcription by LIM domain homeobox gene isl-1. Mol Endocrinol 10:243–251

    Article  PubMed  CAS  Google Scholar 

  • Watrin F, Wolgemuth DJ (1993) Conservation and divergence of patterns of expression and lineage-specific transcripts in orthologues and paralogues of the mouse Hox-1.4 gene. Dev Biol 156:136–145

    Article  PubMed  CAS  Google Scholar 

  • Yaworsky PJ, Kappen C (1999) Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev Biol 205:309–321

    Article  PubMed  CAS  Google Scholar 

  • Yaworsky PJ, Gardner DP, Kappen C (1997) Transgenic analyses reveal neuron and muscle specific elements in the murine neurofilament light chain gene promoter. J Biol Chem 272:25112–25120

    Article  PubMed  CAS  Google Scholar 

  • Yueh YG, Gardner DP, Kappen C (1998) Evidence for regulation of cartilage differentiation by the homeobox gene Hoxc-8. Proc Natl Acad Sci USA 95:9956–9961

    Article  PubMed  CAS  Google Scholar 

  • Yueh YG, Yaworsky PJ, Kappen C (2000) The Herpes Simplex Virus transcriptional transactivator VP16 is detrimental to preimplantation development in the mouse. Mol Reprod Dev 55:37–46

    Article  PubMed  CAS  Google Scholar 

  • Zhang MB, Kim HJ, Marshall H, Gendronmaguire M, Lucas DA, Baron A, Gudas LJ, Gridley T, Krumlauf R, Grippo JF (1994) Ectopic hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120:2431–2442

    PubMed  CAS  Google Scholar 

  • Zimmerman L, Lendahl U, Cunningham M, Mckay R, Parr B, Gavin B, Mann J, Vassileva G, Mcmahon A (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12:11–24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Andy McMahon for providing the rat nestin enhancer, Thomas Edlund for the Isl1 cDNA, Gerry Byrne for the IE-Hoxc8 and NFL-TSV plasmids, MiMi Macias for making the IE-Hoxd4 and IE-Isl1 constructs, to her and Dr. H. (Tina) Dinh Treece for performing RT-PCR assays, to Diane Costanzo, Scott Hanson, and Jacalyn MacGowan for genotyping of transgenic mice, to Anita Jennings for histology, to Tom Bargar for electron microscopy, and to Drs. David Gardner, Y. Gloria Yueh, and Gabriela Pavlinkova for discussions. The initial transgenic mouse strains were generated at Mayo Clinic Scottsdale, and additional analyses performed at University of Nebraska Medical Center and Pennington Biomedical Research Center. Portions of this work were supported by the Arizona Disease Control Research Commission and Mayo Foundation for Medical Education and Research (to C.K.), The Neurosciences Support Corporation and the R. Lounsbery Foundation (to J.M.S.), the University of Nebraska Research Initiative (to C.K. and J.M.S.), the Peggy M. Pennington Cole Chair for Maternal Biology (to C.K.), and NIH grants RO1-HD34706 (to C.K., with a supplement to G.P.) and RO1-HD055528 (to J.M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Kappen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappen, C., Yaworsky, P.J., Muller, Y.L. et al. Transgenic studies on homeobox genes in nervous system development: spina bifida in Isl1 transgenic mice. Transgenic Res 22, 343–358 (2013). https://doi.org/10.1007/s11248-012-9643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9643-x

Keywords

Navigation