Skip to main content
Log in

ZSM-5/TiO2 Hybrid Photocatalysts: Influence of the Preparation Method and Synergistic Effect

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work, the influence of the preparation method of ZSM-5/TiO2 hybrids on the photocatalytic performance for removal of formaldehyde (HCHO) or trichloroethylene (C2HCl3) in gas phase was analyzed. For this purpose, two methods for the synthesis of the hybrids, the incipient wetness impregnation (I) and the mechanical mixing method (M), were selected. The photocatalysts were characterized by N2 adsorption–desorption, TEM, UV–Vis spectroscopy, XRD and electrophoretic migration. Also, the adsorption ability of the individual materials and hybrids was analyzed. ZSM-5/TiO2 hybrids showed higher photocatalytic activity than bare TiO2, independently of the preparation method selected. Mechanical mixing is a simple and easily scalable method to prepare highly active photocatalyst with high amounts of titania. The internal diffusion processes of the reactants to the active sites could be improved due to the micro–mesoporous structure developed on these hybrids. Incipient wetness impregnation method leads to photocatalysts with higher photodegradation rates per active site. The hybrids synthetized by this method show TiO2 nanoparticles homogeneously dispersed on the ZSM-5 phase. The fraction of TiO2 exposed on the surface ca. 75 mol% was similar for materials prepared by both methods, explaining the similar adsorption and photocatalytic properties, independently of the TiO2 content. The nature of the pollutant has an important role in the adsorption and photocatalytic properties of the composites. Finally, the effect of the incorporation of the zeolite in the photocatalytic system was analyzed. For this purpose, the influence of the zeolite and titania arrangement in the sample holder on the photodegradation rate was analyzed. Although the incorporation of the zeolite induces a positive effect on the photocatalytic performance, independently of the position on the sample holder, a clear synergistic effect when both phases were in intimate contact such as in the ZSM-5/TiO2 hybrid was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allport DC, Gilbert DS, Outterside SM (2003) MDI and TDI: safety, health and the environment: a source book and practical guide. John Wiley & Sons, Chichester

    Book  Google Scholar 

  2. Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43(14):2229–2246

    Article  CAS  Google Scholar 

  3. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203(1):82–86

    Article  CAS  Google Scholar 

  4. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2(12):1231–1257

    Article  CAS  Google Scholar 

  5. Fresno F, Portela R, Suarez S, Coronado JM (2014) Photocatalytic materials: recent achievements and near future trends. J Mater Chem A 2:2863–2884

    Article  CAS  Google Scholar 

  6. Suárez S, Coronado JM, Portela R, Martín JC, Yates M, Ávila P, Sánchez B (2008) On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization. Environ Sci Technol 42(16):5892–5896

    Article  Google Scholar 

  7. Yoneyama H, Torimoto T (2000) Titanium dioxide/adsorbent hybrid photocatalysis for photodestruction of organic substances of dilute concentrations. Catal Today 58:133–140

    Article  CAS  Google Scholar 

  8. Corma A, Garcia H (2004) Zeolite-based photocatalysts. Chem Commun 13:1443–1459

    Article  Google Scholar 

  9. Kuwahara Y, Aoyama J, Miyakubo K, Eguchi T, Kamegawa T, Mori K, Yamashita H (2012) TiO2 photocatalyst for degradation of organic compounds in water and air supported on highly hydrophobic FAU zeolite: structural, sorptive, and photocatalytic studies. J Catal 285(1):223–234

    Article  CAS  Google Scholar 

  10. Shams-Ghahfarokhi Z, Nezamzadeh-Ejhieh A (2015) As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Mater Sci Semicond Process 39:265–275

    Article  CAS  Google Scholar 

  11. Jansson I, Suárez S, García-García FJ, Sánchez B (2015) Zeolite–TiO2 hybrid composites for pollutant degradation in gas phase. Appl Catal B 178:100–107

    Article  CAS  Google Scholar 

  12. Klimenkov M, Nepijko SA, Matz W, Bao X (2001) The study of Ti doped ZSM-5 particles and cavities inside them. J Cryst Growth 231(4):577–588

    Article  CAS  Google Scholar 

  13. Portela R, Jansson I, Suárez S, Villarroel M, Sánchez B, Ávila P (2017) Natural silicate-TiO2 hybrids for photocatalytic oxidation of formaldehyde in gas phase. Chem Eng J 310:560–570

    Article  CAS  Google Scholar 

  14. Durgakumari V, Subrahmanyam M, Subba Rao KV, Ratnamala A, Noorjahan M, Tanaka K (2002) An easy and efficient use of TiO2 supported HZSM-5 and TiO2 + HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol. Appl Catal A 234(1–2):155–165

    Article  CAS  Google Scholar 

  15. Takeuchi M, Deguchi J, Hidaka M, Sakai S, Woo K, Choi P-P, Park J-K, Anpo M (2009) Enhancement of the photocatalytic reactivity of TiO2 nano-particles by a simple mechanical blending with hydrophobic mordenite (MOR) zeolite. Appl Catal B 89(3–4):406–410

    Article  CAS  Google Scholar 

  16. Minero C, Catozzo F, Pelizzetti E (1992) Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions. Langmuir 8(2):481–486

    Article  CAS  Google Scholar 

  17. Haick H, Paz Y (2001) Remote photocatalytic activity as probed by measuring the degradation of self-assembled monolayers anchored near microdomains of titanium dioxide. J Phys Chem B 105(15):3045–3051

    Article  CAS  Google Scholar 

  18. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380

    Article  CAS  Google Scholar 

  19. Saito A, Foley HC (1991) Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J 37(3):429–436

    Article  CAS  Google Scholar 

  20. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

  21. Kubelka P (1931) Ein beitrag zur optik der farban striche. Z Tech Phys 12:593–603

    Google Scholar 

  22. Smoluchowski Mv (1906) Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann Phys 326(14):756–780

    Article  Google Scholar 

  23. Gil-Llambias FJ, Escudey-Castro AM (1982) Use of zero point charge measurements in determining the apparent surface coverage of molybdena in MoO3/γ-Al2O3 catalysts. J Chem Soc Chem Commun 9:478–479

    Article  Google Scholar 

  24. Driessen MD, Miller TM, Grassian VH (1998) Photocatalytic oxidation of trichloroethylene on zinc oxide: Characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy. J Mol Catal A 131(1–3):149–156

    Article  CAS  Google Scholar 

  25. Suárez S, Arconada N, Castro Y, Coronado JM, Portela R, Durán A, Sánchez B (2011) Photocatalytic degradation of TCE in dry and wet air conditions with TiO2 porous thin films. Appl Catal B 108–109:14–21

    Article  Google Scholar 

  26. Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131(1–2):175–188

    Article  CAS  Google Scholar 

  27. Miranda-García N, Suárez S, Sánchez B, Coronado JM, Malato S, Maldonado MI (2011) Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl Catal B 103(3–4):294–301

    Article  Google Scholar 

  28. Carrott PJM, Sing KSW (1986) Characterization of Silicalite-1 and ZSM-5 zeolites by low-temperature nitrogen adsorption. Chem Ind 17:786–787

    Google Scholar 

  29. Rouquerol J, Rouquerol F, Sing KSW (1998) Adsorption by powders and porous solids: principles, methodology and applications. Elsevier Science, London

    Google Scholar 

  30. Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106(3):896–910

    Article  CAS  Google Scholar 

  31. Bayram H, Onal M, Yılmaz H, Sarıkaya Y (2010) Thermal analysis of a white calcium bentonite. J Therm Anal Calorim 101:873–879

    Article  CAS  Google Scholar 

  32. Jansson I, Kobayashi K, Hori H, Sánchez B, Ohtani B, Suárez S (2017) Decahedral anatase titania particles immobilized on zeolitic materials for photocatalytic degradation of VOC. Catal Today 287:22–29

  33. Zhang Q, Li R, Li Z, Li A, Wang S, Liang Z, Liao S, Li C (2016) The dependence of photocatalytic activity on the selective and nonselective deposition of noble metal cocatalysts on the facets of rutile TiO2. J Catal 337:36–44

    Article  CAS  Google Scholar 

  34. Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104(15):3481–3487

    Article  CAS  Google Scholar 

  35. Fu X, Zeltner WA, Anderson MA (1995) The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Appl Catal B 6:209–224

    Article  CAS  Google Scholar 

  36. Ballmoos RE, Higgins JB (1990) Collection of simulated XDR powder patterns from zeolites. IZA, Amsterdam

    Google Scholar 

  37. Xu Y, Langford CH (1997) Photoactivity of titanium dioxide supported on MCM41, zeolite X, and zeolite Y. J Phys Chem B 101(16):3115–3121

    Article  CAS  Google Scholar 

  38. Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723

    Article  CAS  Google Scholar 

  39. Anderson C, Bard AJ (1997) Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J Phys Chem B 101:2611–2616

    Article  CAS  Google Scholar 

  40. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, Coss Rd, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605

    Article  CAS  Google Scholar 

  41. Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM, Soria J, Anderson MA (2006) Sol-gel preparation of TiO2-ZrO2 thin films supported on glass rings: influence of phase composition on photocatalytic activity. Thin Solid Films 502(1–2):125–131

    Article  Google Scholar 

  42. Zheng S, Gao L, Zhang Q-H, Guo J-K (2000) Synthesis, characterization and photocatalytic properties of titania-modified mesoporous silicate MCM-41. J Mater Chem 10(3):723–727

    Article  CAS  Google Scholar 

  43. Tawari A, Einicke W-D, Gläser R (2016) Photocatalytic oxidation of NO over composites of titanium dioxide and zeolite ZSM-5. Catalysts 6(2):31

    Article  Google Scholar 

  44. Gao X, Wachs IE (1999) Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51(2):233–254

    Article  CAS  Google Scholar 

  45. Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2010) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6(1):1–8

    Google Scholar 

  46. Esmaili-Hafshejani J, Nezamzadeh-Ejhieh A (2016) Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution. J Hazard Mater 316:194–203

    Article  CAS  Google Scholar 

  47. Derikvandi H, Nezamzadeh-Ejhieh A (2017) Synergistic effect of p–n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2. J Colloid Interface Sci 490:314–327

    Article  CAS  Google Scholar 

  48. Nussbaum M, Paz Y (2012) Ultra-thin SiO2 layers on TiO2: improved photocatalysis by enhancing products’ desorption. Phys Chem Chem Phys 14(10):3392–3399

    Article  CAS  Google Scholar 

  49. Paz Y (2010) Composite titanium dioxide photocatalysts and the “Adsorb & Shuttle” approach: a review. Solid State Phenom 162:135–162

    Article  CAS  Google Scholar 

  50. Xu Y, Langford CH (1995) Enhanced Photoactivity of a titanium(IV) oxide supported on ZSM5 and zeolite A at low coverage. J Phys Chem 99(29):11501–11507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The studies presented in this paper were supported by the Spanish Ministry of Economy and Competitiveness (projects CTM-2011-25093, LIFE12-ENV_ES_000280 and Mss. Jansson’s Ph.D. Grant BES-2012-055758). The authors want to thank the Research Support Unit from ICP-CSIC for XRD and BET analysis. Authors are grateful to Dr. Yates for his valuable support on the interpretation of the N2 adsorption–desorption results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suárez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansson, I., Suárez, S., García-García, F.J. et al. ZSM-5/TiO2 Hybrid Photocatalysts: Influence of the Preparation Method and Synergistic Effect. Top Catal 60, 1171–1182 (2017). https://doi.org/10.1007/s11244-017-0805-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0805-1

Keywords

Navigation