Skip to main content
Log in

Plasma Synthesis of Ni2P from Mixtures of NiCl2 and Hypophosphites

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A series of mixtures of NiCl2, hypophosphites (NaH2PO2 and NH4H2PO2), and additives were used as precursors (denoted as x additive:y hypophosphite:z NiCl2, where x, y, and z represents the molar ratios of the compounds) for the synthesis of Ni2P both in N2 and H2 plasma. The catalytic performances of the obtained catalysts were evaluated by the hydrodenitrogenation (HDN) of quinoline (Q) and decahydroquinoline (DHQ). Ni2P was stoichiometrically synthesized by the treatment of 1.0NH4H2PO2:2.0NiCl2 with N2 plasma at a low total power input of 8 W (40 V × 0.2 A). In H2 plasma, the precursor was over-reduced to a mixture of Ni and Ni2P, with Ni2P as the minor phase. The over-reduction can be inhibited by the addition of proper amount of alkali-metal chloride (NaCl or KCl) or P2O5. CaCl2 facilitated the reduction of nickel salts to Ni. KCl was the best among the additives investigated. Both the surface and bulk over-reduction of 1.0NH4H2PO2:2.0NiCl2 was inhibited by KCl, while P2O5 mainly inhibited the bulk over-reduction. The addition of KCl strongly suppressed the hydrogenation of Q to DHQ, but facilitated the HDN of DHQ. On the other hand, not only the hydrogenation of Q but also the dehydrogenation of DHQ was substantially inhibited by P2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Oyama ST, Gott T, Zhao HY, Lee YK (2009) Catal Today 143: 94–107

    Article  CAS  Google Scholar 

  2. Oyama ST (2003) J Catal 216:343–352

    Article  CAS  Google Scholar 

  3. Carenco S, Leyva-Pérez A, Concepción P, Boissière C, Mézailles N, Sanchez C, Corma A (2012) Nano Today 7:21–28

    Article  CAS  Google Scholar 

  4. Cho A, Kim H, Iino A, Takagaki A, Oyama ST (2014) J Catal 318:151–161

    Article  CAS  Google Scholar 

  5. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) J Am Chem Soc 135:9267–9270

    Article  CAS  Google Scholar 

  6. Oyama ST, Lee YK (2008) J Catal 258:393–400

    Article  CAS  Google Scholar 

  7. Burns AW, Layman KA, Bale DH, Bussell ME (2008) Appl Catal A 343:68–76

    Article  CAS  Google Scholar 

  8. Prins R, Bussell ME (2012) Catal Lett 142:1413–1436

    Article  CAS  Google Scholar 

  9. Da Silva VT, Sousa LA, Amorim RM, Andrini L, Figueroa SJA, Requejo FG, Vicentini FC (2011) J Catal 279:88–102

    Article  Google Scholar 

  10. Cecilia JA, Infantes-Molina A, Rodríguez-Castellón E, Jiménez-López A (2009) J Catal 263:4–15

    Article  CAS  Google Scholar 

  11. Chiang R-K, Chiang R-T (2007) Inorg Chem 36:369–371

    Article  Google Scholar 

  12. Yang S, Prins R (2005) Chem Commun 33:4178–4180

    Article  Google Scholar 

  13. Guan Q, Li W, Zhang M, Tao K (2009) J Catal 263:1–3

    Article  CAS  Google Scholar 

  14. Guan Q and Li W (2010) J Catal 271:413–415

    Article  CAS  Google Scholar 

  15. Song H, Dai M, Song H, Wan X, Xu X (2013) Appl Catal A 462–463:247–255

    Article  Google Scholar 

  16. Tian S, Li X, Wang A, Prins R, Chen Y, Hu Y (2016) Angew Chem Int Ed 53:4030–4034

    Article  Google Scholar 

  17. Loboué H, Guillot-Deudon C, Popa AF, Lafond A, Rebours B, Pichon C, Cseri T, Berhault G, Geantet C (2008) Catal Today 130:63–68

    Article  Google Scholar 

  18. Wang AJ, Qin ML, Guan J, Wang L, Guo HC, Li X, Wang Y, Prins R, Hu YK (2008) Angew Chem Int Ed 47:6052–6054

    Article  CAS  Google Scholar 

  19. Jian M, Prins R (1998) J Catal 179:18–27

    Article  CAS  Google Scholar 

  20. Duan X, Teng Y, Wang A, Kogan VM, Li X, Wang Y (2009) J Catal 261:232–240

    Article  CAS  Google Scholar 

  21. Satterfield CN, Cocchetto JF (1981) Ind Eng Chem Process Des Dev 20:53–62

    Article  CAS  Google Scholar 

  22. Rodriguez JA, Kim J-K, Hanson JC, Sawhill SJ, Bussell ME (2003) J Phys Chem 107:6276–6285

    Article  CAS  Google Scholar 

  23. Swanson HE, McMurdie HF, Morris MC, Evans EH (1968) Standard X-ray diffraction powder patterns. National Bureau of Standards, Gaithersburg

    Book  Google Scholar 

  24. Sawhill SJ, Layman KA, Van Wyk DR, Engelhard MH, Wang C, Bussell ME (2005) J Catal 231:300–313

    Article  CAS  Google Scholar 

  25. Yang R-X, Chuang K-H, Wey M-Y (2015) Energy Fuel 29:8178–8187

    Article  CAS  Google Scholar 

  26. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C (2013) Chem Rev 113:7981–8065

    Article  CAS  Google Scholar 

  27. Eijsbouts S, Van Gestel JNM, Van Veen JAR, De Beer VHJ, Prins R (1991) J Catal 131:412–432

    Article  CAS  Google Scholar 

  28. Prins R (2001) Adv Catal 46:399–464

    CAS  Google Scholar 

  29. Li X, Wang A, Sun Z, Li C, Ren J, Zhao B, Wang Y, Chen Y, Hu Y (2003) Appl Catal A 254:319–326

    Article  CAS  Google Scholar 

  30. Ortega-Domínguez RA, Mendoza-Nieto JA, Hernández-Hipólito P, Garrido-Sánchez F, Escobar-Aguilar J, Barri SAI, Chadwick D, Klimova TE (2015) J Catal 329:457–470

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (U1162203, 21473017, and 21673029), the United Funds of NSFC-Liaoning (U1508205), the PetroChina Innovation Foundation (2014D-5006-0402), the Liaoning Provincial Natural Science Foundation of China (201602158), the Cultivation Fund of Outstanding University Teachers in Ningxia (NGY2015209), and the Natural Science Foundation of Ningxia (NZ15284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 272 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, X., Wang, A. et al. Plasma Synthesis of Ni2P from Mixtures of NiCl2 and Hypophosphites. Top Catal 60, 987–996 (2017). https://doi.org/10.1007/s11244-017-0764-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0764-6

Keywords

Navigation