Skip to main content

Advertisement

Log in

Non-Thermal Plasma-Assisted Catalytic Dry Reforming of Methane and Carbon Dioxide Over G-C3N4-Based Catalyst

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the present study, pure plasma and plasma-assisted catalytic activation of reforming of methane and carbon dioxide into syngas production were performed in a coaxial dielectric barrier discharge (DBD) plasma reactor at low temperature. For pure plasma, higher input power was favorable for the conversions of CH4 and CO2 but led to lower selectivities of syngas, while selectivities of syngas increased under lower flow rate of feed gases. A high CH4/CO2 ratio was more selective for C2 hydrocarbon formation. Novel g-C3N4-based catalysts were prepared and filled in the discharge gap at low temperature. The cooperation effect of DBD plasma with g-C3N4 catalyst was achieved that contributed more to the activation of carbon dioxide than that of methane as well as the yield of CO for its low reduction potential. TiO2/g-C3N4 with heterogeneous structure as packing the catalyst bulks into the discharge zone was capable of further improving the reforming of methane and carbon dioxide. TiO2 mass ratio exhibited significant effect on dry reforming reactions and only TiO2/g-C3N4 with 1% TiO2 mass ratio presented enhanced hybrid effect than that of g-C3N4 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen T, Liu H, Shi P, Chen D, Song L, He H, Erost RL (2013) Fuel 107:699

    Article  CAS  Google Scholar 

  2. Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL (2001) Fuel Process Technol 71:139

    Article  CAS  Google Scholar 

  3. Boukha Z, Jiménez-González C, Rivas B, González-Velasco JR, Gutiérrez-Ortiz JI, López-Fonseca R (2014) Appl Catal B 158–159:190

    Article  Google Scholar 

  4. Poirier MG, Trudel J, Guay D (1993) Catal Lett 21:99

    Article  CAS  Google Scholar 

  5. O’Connor AM, Ross JRH (1998) Catal Today 46:203

    Article  Google Scholar 

  6. Tsui M, Miyao T, Naito S (2000) Catal Lett 69:195

    Article  Google Scholar 

  7. Zheng XG, Tan SY, Dong LC, Li SB, Chen HM (2015) Chem Eng J 265:147

    Article  CAS  Google Scholar 

  8. Wang B, Yan W, Ge W, Duan X (2013) Chem Eng J 234:354

    Article  CAS  Google Scholar 

  9. Goujard V, Tatibouet JM, Batiot-Dupeyrat C (2009) IEEE Trans Plasma Sci 37:2342

    Article  CAS  Google Scholar 

  10. Wang Q, Shi HL, Yan BH, Jin Y, Cheng Y (2011) Int J Hydrogen Energy 36:8301

    Article  CAS  Google Scholar 

  11. Paulussen S, Verheyde B, Tu X, Bie CD, Martens T, Petrovic D, Bogaerts A, Sels B (2010) Plasma Sources Sci Technol 19:034015

    Article  Google Scholar 

  12. Wang Q, Yan BH, Jin Y, Cheng Y (2009) Plasma Chem Plasma Process 29:217

    Article  Google Scholar 

  13. Paulmier T, Fulcheri L (2005) Chem Eng J 106:59

    Article  CAS  Google Scholar 

  14. Eliasson B, Liu CJ, Kogelschatz U (2000) Ind Eng Chem Res 39:1221

    Article  CAS  Google Scholar 

  15. Iwarere S, Rohani V, Ramjugernath D, Fabry F, Fulcheri L (2014) Chem Eng J 241:1

    Article  CAS  Google Scholar 

  16. Tu X, Whitehead JC (2012) Appl Catal B 125:439

    Article  CAS  Google Scholar 

  17. Gallon HJ, Tu X, Whitehead JC (2012) Plasma Process Polym 9:90

    Article  CAS  Google Scholar 

  18. Pham MH, Goujard V, Tatibouet JM, Batiot-Dupeyrat C (2011) Catal Today 171:67

    Article  CAS  Google Scholar 

  19. Zhou LM, Xue B, Kogelschatz U, Eliasson B (1998) Energy Fuels 12:1191

    Article  CAS  Google Scholar 

  20. Kim T, Jo S, Song YH, Lee DH (2014) Appl Energy 113:1692

    Article  CAS  Google Scholar 

  21. Moshrefi MM, Rashidi F, Bozorgzadeh HR, Haghighi ME (2013) Plasma Chem Plasma Process 33:453

    Article  CAS  Google Scholar 

  22. Taghvaei H, Jahanmiri A, Rahimpour MR, Mohamadzadeh Shirazi M, Hooshmand N (2013) Chem Eng J 226:384

    Article  CAS  Google Scholar 

  23. Lay E, Metcalfe C, Kesler O (2012) J Power Sources 218:237

    Article  CAS  Google Scholar 

  24. Song HK, Lee H, Choi JW, Na B (2004) Plasma Chem Plasma Process 24:57

    Article  Google Scholar 

  25. Nair SA, Nozaki T, Okazak K (2007) Chem Eng J 132:85

    Article  CAS  Google Scholar 

  26. Snoeckx R, Aerts R, Tu X, Bogaerts A (2013) J Phys Chem C 117:4957

    Article  CAS  Google Scholar 

  27. Vissokov GP, Panayotova MI (2002) Catal Today 72:213

    Article  CAS  Google Scholar 

  28. Pietruszka B, Anklam K, Heintze M (2004) Appl Catal A Gen 261:19

    Article  CAS  Google Scholar 

  29. Zheng X, Tan S, Dong L, Li S, Chen H (2014) Int J Hydrogen Energy 39:11360

    Article  CAS  Google Scholar 

  30. Zhang AJ, Zhu AM, Guo J, Xu Y, Shi C (2010) Chem Eng J 156:601

    Article  CAS  Google Scholar 

  31. Baylet A, Marecot P, Duprez D, Jeandel X, Lombaert X, Tatibouet JM (2012) Appl Catal B 113–114:31

    Article  Google Scholar 

  32. Nozaki T, Okazaki K (2013) Catal Today 211:29

    Article  CAS  Google Scholar 

  33. Cheng DG, Zhu X, Ben Y, He F, Cui L, Liu CJ (2006) Catal Today 115:205

    Article  CAS  Google Scholar 

  34. Zheng X, Tan S, Dong L, Li S, Chen H (2015) J Power Sources 274:286

    Article  CAS  Google Scholar 

  35. Mahammadunnisa S, Reddy PMK, Ramaraju B, Subrahmanyam C (2013) Energy Fuels 27:4441

    Article  CAS  Google Scholar 

  36. Liu JL, Li XS, Zhu X, Li K, Shi C, Zhu AM (2013) Chem Eng J 234:240

    Article  CAS  Google Scholar 

  37. Indarto A, Coowanitwong N, Choi JW, Lee H, Song HK (2008) Fuel Process Technol 89:214

    Article  CAS  Google Scholar 

  38. Istadi NA, Amin S (2006) Fuel 85:577

    Article  CAS  Google Scholar 

  39. Li Y, Xu G, Liu C, Elisson B, Xue B (2001) Energy Fuels 15:299

    Article  CAS  Google Scholar 

  40. Zhang X, Dai B, Zhu A, Gong W, Liu C (2002) Catal Today 72:223

    Article  CAS  Google Scholar 

  41. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) Nat Mater 8:76

    Article  CAS  Google Scholar 

  42. Wang XC, Blechert S, Antonietti MP (2012) ACS Catal 2:1596

    Article  Google Scholar 

  43. Goettmann F, Thomas A, Antonietti M (2007) Angew Chem Int Ed 46:2717

    Article  CAS  Google Scholar 

  44. Dong GH, Zhang LZ (2012) J Mater Chem 22:1160

    Article  CAS  Google Scholar 

  45. Zhang J, Sun J, Maeda K, Domen K, Liu P, Antonietti M, Fu X, Wang X (2011) Energy Environ Sci 4:675

    Article  CAS  Google Scholar 

  46. Ma J, Tan X, Yu T, Li XL (2016) Int J Hydrogen Energy 41:3877

    Article  CAS  Google Scholar 

  47. Ma JZ, Wang CX, He H (2016) Appl Catal B 184:28

    Article  CAS  Google Scholar 

  48. Boonprakob N, Wetchakun N, Phanichphant S, Waxler D, Sherrell P, Nattestad A, Chen J, Inceesungvorn B (2014) J Colloid and Interface Sci 417:4092

    Article  Google Scholar 

  49. Zhang G, Zhang J, Zhang M, Wang X (2012) J Mater Chem 22:8083

    Article  CAS  Google Scholar 

  50. Wang XJ, Yng WY, Li FT, Xue YB, Liu RH, Hao YJ (2013) Ind Eng Chem Res 52:1714

    Google Scholar 

  51. Sing KSW, Everett DH, Haul RAW (1985) Pure Appl Chem Res 57:603

    CAS  Google Scholar 

  52. Zhen XG, Tan SY, Dong LC, Li SB, Chen HM, Wei SA (2015) Fuel Process Technol 137:250

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Funds of the National Natural Science Foundation of China under Grant No. U1462105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Bao, X., Jiang, N. et al. Non-Thermal Plasma-Assisted Catalytic Dry Reforming of Methane and Carbon Dioxide Over G-C3N4-Based Catalyst. Top Catal 60, 855–868 (2017). https://doi.org/10.1007/s11244-017-0750-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0750-z

Keywords

Navigation