Skip to main content
Log in

Methane Oxidation over Palladium: On the Mechanism in Fuel-Rich Mixtures at High Temperatures

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A kinetic modeling study on methane oxidation over reduced Pd for various fuel-rich conditions around the stoichiometric point of the partial oxidation at high temperatures (900–1100 K) is presented. A thermodynamically consistent detailed surface reaction mechanism is developed within the mean field approximation. The proposed kinetic model consists of 54 elementary-step based reactions including seven gas-phase species and 15 surface intermediates. Three different methane activation paths are implemented, comprising pyrolytic C–H bond dissociation steps, oxygen-assisted and dual-oxygen-assisted CH4 activation. In situ experimental measurements in a quasi-autothermally operated flow reactor, using the capillary sampling technique, are performed for model evaluation. The provided experimental data includes spatially resolved temperature and concentration profiles within a single catalytic channel of a Pd/Al2O3-coated monolith. Supplementary numerical simulations based on literature data for fuel-lean and fuel-rich conditions at high temperatures extend the model’s capability to predict a wide range of different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a:

Open width of square channel (m)

A cat :

Active catalytic surface area (m2)

A ch,square :

Cross-sectional area of square channel (m2)

A geo :

Geometric surface area (m2)

A f,k :

Pre-exponential factor of forward direction in step k (mol, cm, s)

\(A_{k}\) :

Pre-exponential factor of reaction step k (mol, cm, s)

\(A_{k}^{ads}\) :

Pre-exponential factor for an adsorption reaction in step k (mol, cm, s)

\(A_{k}^{o}\) :

Initial pre-exponential factor (mol, cm, s)

\(\tilde{A}_{k}\) :

Perturbed pre-exponential factor (mol, cm, s)

A r,k :

Pre-exponential factor of reverse direction in step k (mol, cm, s)

\(c_{i}^{eq}\) :

Equilibrium concentration of species i (mol/m3)

\(c_{i}^{\text{s}}\) :

Concentration of species i at channel-washcoat interface (mol/m3)

\(c_{i}^{0}\) :

Reference concentration for species i (mol, cm)

\(\bar{c}_{p,i}\) :

Mean molar specific heat capacity of surface species i (J/mol-K)

\(\bar{d}_{Pd}\) :

Mean particle size for palladium (m)

d o :

Diameter of circular channel (m)

D i,M :

Mixture averaged diffusivity of species i in mixture M (m2/s)

D Pd :

Catalyst dispersion for palladium

\(D_{i}^{\text{eff}}\) :

Effective diffusivity of species i in the washcoat (m2/s)

Da II,i :

Second Damköhler-number of species i

E a,k :

Activation energy of reaction step k (J/mol)

E f,k :

Activation energy of forward direction in step k (J/mol)

E r,k :

Activation energy of reverse direction in step k (J/mol)

F cat/geo :

Ratio of catalytic to geometric surface area

G i :

Molar specific Gibbs free energy of species i (J/mol)

\(G_{i}^{\text{ref}}\) :

Molar specific Gibbs free energy of species i at reference conditions (J/mol)

h :

Mixture specific enthalpy of gas-phase (J/kg)

h :

Planck’s constant (J-s)

h i :

Specific enthalpy of species i (J/kg)

H i :

Molar specific enthalpy of species i (J/mol)

i :

Species indices

J i,r :

Radial diffusive flux (kg/m2-s)

k :

Reaction indices

k B :

Boltzmann’s constant (J/K)

k f,k :

Forward rate constant of setp k (mol, cm, s)

k r,k :

Reverse rate constant of step k (mol, cm, s)

k 1st i :

Pseudo first-order rate constant (mol/kg-s-Pa)

K c,k :

Concentration based equilibrium constant of reaction step k (mol, cm)

K s :

Total number of surface reactions

L :

Length of catalytic monolith/channel (m)

L foil :

Length of catalytic foil (m)

L Pd :

Monolitic catalyst loading for palladium (kg/m3)

L wc :

Monolitic washcoat loading (kg/m3)

M i :

Molecular weight of species i (kg/mol)

M Pd :

Molecular weight of palladium (kg/mol)

\(\bar{M}\) :

Mixture averaged molecular weight (kg/mol)

n k :

Molecularity of reaction step k

N ch :

Number of channels

N g :

Total number of gas-phase species

N s :

Total number of surface species

p :

Pressure (Pa)

p i :

Partial pressure of species i (Pa)

p in :

Inlet pressure of catalytic channel (Pa)

p 0 :

Standard state pressure (Pa)

Q k :

Concentration based reaction quotient of step k (mol, cm)

\(Q_{k}^{0}\) :

Reference concentration based reaction quotient of step k (mol, cm)

r :

Radial channel coordinate (m)

r i :

Rate of reaction on surface of step k (mol/m2-s)

R :

Channel radius (m)

R :

Universal gas-constant (J/mol-K)

Re L :

Reynold’s number based on channel length L

s :

Repeat distance of monolith cell (m)

\(s_{i}^{0}\) :

Initial sticking coefficient

\(\dot{s}_{i}\) :

Molar rate of production/consumption of species i (mol/m2-s)

\(\dot{s}_{i}^{eff}\) :

Pore transport corrected molar rate of production/consumption of species i (mol/m2-s)

S a,k :

Activation entropy of reaction step k (J/mol-K)

S i :

Molar specific entropy of species i (J/mol-K)

S i,k :

Sensitivity coefficient of reaction step k for species i

\(S_{i,k}^{0}\) :

Normalized sensitivity coefficient of step k for species i

Sc :

Schmidt’s number

t :

Time (s)

T :

Temperature (K)

T g :

Gas-phase temperature (K)

T in :

Inlet temperature of catalytic channel (K)

T ref :

Reference temperature (K)

T 0 :

Standard state temperature (K)

\(T_{{_{\text{ad}} }}^{{^{\text{out}} }}\) :

Adiabatic outlet temperature (K)

\(T_{{_{ \exp } }}^{{^{\text{in}} }}\) :

Experimentally measured channel inlet temperature (K)

\(T_{{_{ \exp } }}^{{^{\text{out}} }}\) :

Experimentally measured channel outlet temperature (K)

u :

Axial velocity component (m/s)

u 0 :

Channel inlet velocity (m/s)

v :

Radial velocity component (m/s)

V ch :

Volume of a single channel (m3)

\(\dot{V}^{0}\) :

Standard state volume flow (m3/s)

w Pd :

Weight fraction of palladium on catalyst (%)

\(x_{i}^{0}\) :

Initial mole fraction of species i

\(\bar{x}_{i}\) :

Mole fraction of species i after pertubation

Y i :

Mass-fraction of species i in gas-phase

z :

Axial channel coordiante (m)

Z k :

Reversibility of reaction step k

β k :

Parameter for temperature dependence on pre-exponential factor

ΓPd :

Surface site density of palladium (mol/m2)

δ s :

Wall thickness (m)

δ wc :

Average washcoat thickness (m)

\(\delta_{\text{wc}}^{\text{eff}}\) :

Effective washcoat thickness (m)

ΔR G k :

Gibbs free energy of reaction step k (J/mol)

ΔR H k :

Heat of reaction step k (J/mol)

ΔR S k :

Entropy of reaction step k (J/mol-K)

ɛ :

Perturbation parameter

ɛ i :

Parameter for coverage dependent activation energy (J/mol)

ɛ wc :

Washcoat porosity

η :

Washcoat effectiveness factor

η i :

Washcoat effectiveness factor of species i

η th :

Thermal reactor efficiency

η ext,i :

External effectiveness factor of species i

θ i :

Surface coverage of species i

\(\theta_{i}^{0}\) :

Reference surface coverage of species i

λ :

Mixture heat conductivity

μ :

Mixture dynamic viscosity

υ i,k :

Stoichiometric coefficient species i in reaction step k

\(\upsilon_{i,k}^{\prime}\) :

Stoichiometric coefficient species i in forward step k

\(\upsilon_{i,k}^{\prime\prime}\) :

Stoichiometric coefficient species i in backward step k

ρ :

Density (kg/m3)

ρ wc :

Average washcoat density (kg/m3)

σ i :

Site occupation number of species i

ϕ i :

Thiele modulus of species i

x i :

Name of species i

References

  1. Armor JN (2014) Catal Today 236:171–181

    Article  CAS  Google Scholar 

  2. Karion A, Sweeney C, Pétron G, Frost G, Michael Hardesty R, Kofler J, Miller BR, Newberger T, Wolter S, Banta R, Brewer A, Dlugokencky E, Lang P, Montzka SA, Schnell R, Tans P, Trainer M, Zamora R, Conley S (2013) Geophys Res Lett 40:4393–4397

    Article  CAS  Google Scholar 

  3. Abbasi R, Huang G, Istratescu GM, Wu L, Hayes RE (2015) Can J Chem Eng 93:1474–1482

    Article  CAS  Google Scholar 

  4. Choudhary T, Banerjee S, Choudhary V (2002) Appl Catal A 234:1–23

    Article  CAS  Google Scholar 

  5. Aryafar M, Zaera F (1997) Catal Lett 48:173–183

    Article  CAS  Google Scholar 

  6. Maillet T, Solleau C, Barbier J, Duprez D (1997) Appl Catal B 14:85–95

    Article  CAS  Google Scholar 

  7. Burch R, Loader PK, Urbano FJ (1996) Catal Today 27:243–248

    Article  CAS  Google Scholar 

  8. Gremminger AT, de Carvalho HWP, Popescu R, Grunwaldt J, Deutschmann O (2015) Catal Today 258:470–480

    Article  CAS  Google Scholar 

  9. Gélin P, Primet M (2002) Appl Catal B 39:1–37

    Article  Google Scholar 

  10. Anderson RB, Stein KC, Feenan JJ, Hofer LJE (1961) Ind Eng Chem 53:809–812

    Article  CAS  Google Scholar 

  11. Lu Y, Kumar MS, Chiarello GL, Eggenschwiler PD, Bach C, Weilenmann M, Spiteri A, Weidenkaff A, Ferri D (2013) Catal Commun 39:55–59

    Article  CAS  Google Scholar 

  12. Zhu G, Han J, Zemlyanov DY, Ribeiro FH (2005) J Phys Chem B 109:2331–2337

    Article  CAS  Google Scholar 

  13. Forzatti P, Groppi G (1999) Catal Today 54:165–180

    Article  CAS  Google Scholar 

  14. Graham GW, König D, Poindexter BD, Remillard JT, Weber WH (1999) Top Catal 8:35–43

    Article  CAS  Google Scholar 

  15. Burch R (1997) Catal Today 35:27–36

    Article  CAS  Google Scholar 

  16. Centi G (2001) J Molec Catal A 173:287–312

    Article  CAS  Google Scholar 

  17. Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A (2002) Catal Rev 44:593–649

    Article  CAS  Google Scholar 

  18. Chin Y, Resasco DE (1999) Catalysis 14:1–39

    Article  CAS  Google Scholar 

  19. Li Z, Hoflund GB (2003) J Nat Gas Chem 12:153–160

    CAS  Google Scholar 

  20. Wen-Ge Liu, De-Yong Guo, Xin Xu (2012) J China Pet Process & Petrochem Technol 14:1–9

    Google Scholar 

  21. Xin Y, Wang H, Law CK (2014) Combust Flame 161:1048–1054

    Article  CAS  Google Scholar 

  22. Colussi S, Trovarelli A, Vesselli E, Baraldi A, Comelli G, Groppi G, Llorca J (2010) Appl Catal A 390:1–10

    Article  CAS  Google Scholar 

  23. Chin YC, Buda C, Neurock M, Iglesia E (2013) J Am Chem Soc 135:15425–15442

    Article  CAS  Google Scholar 

  24. Zhu G, Han J, Zemlyanov DY, Ribeiro FH (2004) J Am Chem Soc 126:9896–9897

    Article  CAS  Google Scholar 

  25. Au-Yeung J (1999) J Catal 188:132–139

    Article  CAS  Google Scholar 

  26. Farrauto RJ, Hobson MC, Kennelly T, Waterman EM (1992) Appl Catal A 81:227–237

    Article  CAS  Google Scholar 

  27. Monteiro R, Zemlyanov D, Storey J, Ribeiro F (2001) J Catal 201:37–45

    Article  CAS  Google Scholar 

  28. Kimmerle B, Baiker A, Grunwaldt J (2010) Phys Chem Chem Phys 12:2288–2291

    Article  CAS  Google Scholar 

  29. McCarty JG (1995) Catal. Today 26:283–293

    Article  CAS  Google Scholar 

  30. Groppi G, Artioli G, Cristiani C, Lietti L, Forzatti P (2001) In: Natural Gas Conversion VI, vol 136. Elsevier

  31. Chen X, Schwank JW, Fisher GB, Cheng Y, Jagner M, McCabe RW, Katz MB, Graham GW, Pan X (2014) Appl Catal A 475:420–426

    Article  CAS  Google Scholar 

  32. Diehm C, Deutschmann O (2014) Int J Hydrogen Energy 39:17998–18004

    Article  CAS  Google Scholar 

  33. Livio D, Diehm C, Donazzi A, Beretta A, Deutschmann O (2013) Appl Catal A 467:530–541

    Article  CAS  Google Scholar 

  34. Bugosh GS, Easterling VG, Rusakova IA, Harold MP (2015) Appl Catal B 165:68–78

    Article  CAS  Google Scholar 

  35. Beretta A, Donazzi A, Livio D, Maestri M, Groppi G, Tronconi E, Forzatti P (2011) Catal Today 171:79–83

    Article  CAS  Google Scholar 

  36. Sá J, Fernandes DLA, Aiouache F, Goguet A, Hardacre C, Lundie D, Naeem W, Partridge WP, Stere C (2010) Analyst 135:2260–2272

    Article  CAS  Google Scholar 

  37. Horn R, Williams K, Degenstein N, Schmidt L (2006) J Catal 242:92–102

    Article  CAS  Google Scholar 

  38. Schwarz H, Geske M, Goldsmith CF, Schlögl R, Horn R (2014) Combust Flame 161:1688–1700

    Article  CAS  Google Scholar 

  39. Touitou J, Morgan K, Burch R, Hardacre C, Goguet A (2012) Catal Sci Technol 2:1811–1813

    Article  CAS  Google Scholar 

  40. Hannemann S, Grunwaldt J, Kimmerle B, Baiker A, Boye P, Schroer C (2009) Top Catal 52:1360–1370

    Article  CAS  Google Scholar 

  41. Geske M, Korup O, Horn R (2013) Catal Sci Technol 3:169–175

    Article  CAS  Google Scholar 

  42. Karadeniz H, Karakaya C, Tischer S, Deutschmann O (2015) Zeitschrift für Physikalische Chemie 229:709–737

    Article  CAS  Google Scholar 

  43. Zhu H, Kee RJ, Engel JR, Wickham DT (2007) P Combust Inst 31:1965–1972

    Article  CAS  Google Scholar 

  44. Korup O, Schlögl R, Horn R (2012) Catal Today 181:177–183

    Article  CAS  Google Scholar 

  45. Blomberg S, Brackmann C, Gustafson J, Aldén M, Lundgren E, Zetterberg J (2015) ACS Catal 5:2028–2034

    Article  CAS  Google Scholar 

  46. Zellner A, Suntz R, Deutschmann O (2015) Angew Chem Int Ed 54:2653–2655

    Article  CAS  Google Scholar 

  47. Mantzaras J (2013) Flow Turbul Combust 90:681–707

    Article  CAS  Google Scholar 

  48. Eriksson S, Schneider A, Mantzaras J, Wolf M, JärÅs S (2007) Chem Eng Sci 62:3991–4011

    Article  CAS  Google Scholar 

  49. Hettel M, Diehm C, Bonart H, Deutschmann O (2015) Catal Today 258:230–240

    Article  CAS  Google Scholar 

  50. Hettel M, Diehm C, Torkashvand B, Deutschmann O (2013) Catal Today 216:2–10

    Article  CAS  Google Scholar 

  51. Goguet A, Partridge WP, Aiouche F, Hardacre C, Morgan K, Stere C, Sá J (2014) Catal Today 236:206–208

    Article  CAS  Google Scholar 

  52. Hettel M, Diehm C, Deutschmann O (2014) Catal Today 236:209–213

    Article  CAS  Google Scholar 

  53. O. Deutschmann, S. Tischer, S. Kleditzsch, V. M. Janardhanan, C. Correa, D. Chatterjee, N. Mladenov, H. D. Minh, H. Karadeniz, M. Hettel (2014) DETCHEM Software package, Karlsruhe, Germany

  54. Raja LL, Kee RJ, Deutschmann O, Warnatz J, Schmidt LD (2000) Catal Today 59:47–60

    Article  CAS  Google Scholar 

  55. Deutschmann O, Schmidt LD (1998) AIChE J 44:2465–2477

    Article  CAS  Google Scholar 

  56. Deuflhard P, Hairer E, Zugck J (1987) Numer Math 51:501–516

    Article  Google Scholar 

  57. Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press, Cambridge

    Google Scholar 

  58. Sharma RK, Cresswell DL, Newson EJ (1991) Ind Eng Chem Res 30:1428–1433

    Article  CAS  Google Scholar 

  59. Dittmeyer R, Emig G (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  60. Bergeret G, Gallezot P (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of Heterogeneous Catalysis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  61. Chorkendorff I, Niemantsverdriet JW (2003) Concepts of modern catalysis and kinetics. Wiley-VCH, Weinheim

    Book  Google Scholar 

  62. Fujimoto K, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) J Catal 179:431–442

    Article  CAS  Google Scholar 

  63. Monteiro R, Zemlyanov D, Storey J, Ribeiro F (2001) J Catal 199:291–301

    Article  CAS  Google Scholar 

  64. Ciuparu D, Bozon-Verduraz F, Pfefferle L (2002) J Phys Chem B 106:3434–3442

    Article  CAS  Google Scholar 

  65. Lyubovsky M, Pfefferle L (1999) Catal Today 47:29–44

    Article  CAS  Google Scholar 

  66. Chin YC, Buda C, Neurock M, Iglesia E (2011) J Am Chem Soc 133:15958–15978

    Article  CAS  Google Scholar 

  67. Cortright RD, Dumesic JA (2001) In: Advances in Catalysis, vol 46. Academic Press, San Diego

    Google Scholar 

  68. Zhdanov VP (1991) Surf Sci Rep 12:185–242

    Article  Google Scholar 

  69. Shustorovich E, Sellers H (1998) Surf Sci Rep 31:1–119

    Article  CAS  Google Scholar 

  70. Groppi G, Cristiani C, Lietti L, Forzatti P (2000) Stud Surf Sci Catal 130:3801–3806

    Article  Google Scholar 

  71. Delgado K, Maier L, Tischer S, Zellner A, Stotz H, Deutschmann O (2015) Catalysts 5:871–904

    Article  CAS  Google Scholar 

  72. Valden M, Pere J, Hirsimäki M, Suhonen S, Pessa M (1997) Surf Sci 377–379:605–609

    Article  Google Scholar 

  73. Hirsimäki M, Paavilainen S, Nieminen J, Valden M (2001) Surf Sci 482–485:171–176

    Article  Google Scholar 

  74. Hirsimäki M, Valden M (2004) Surf Sci 562:284

    Article  CAS  Google Scholar 

  75. Tait SL, Dohnálek Z, Campbell CT, Kay BD (2005) Surf Sci 591:90–107

    Article  CAS  Google Scholar 

  76. Trinchero A, Hellman A, Grönbeck H (2013) Surf Sci 616:206–213

    Article  CAS  Google Scholar 

  77. Salanov AN, Suprun EA (2009) Kinet Catal 50:31–39

    Article  CAS  Google Scholar 

  78. Milun M, Pervan P, Wandelt K (1989) Surf Sci 218:363–388

    Article  CAS  Google Scholar 

  79. Conrad H, Ertl G, Küppers J, Latta EE (1977) Surf Sci 65:245–260

    Article  CAS  Google Scholar 

  80. Salanov AN, Titkov AI, Bibin VN (2006) Kinet Catal 47:430–436

    Article  CAS  Google Scholar 

  81. Szanyi J, Kuhn WK, Goodman DW (1993) J Vac Sci Technol A 11:1969–1974

    Article  CAS  Google Scholar 

  82. Conrad H, Ertl G, Koch J, Latta EE (1974) Surf Sci 43:462–480

    Article  CAS  Google Scholar 

  83. Behm RJ, Christmann K, Ertl G, Van Hove MA (1980) J Chem Phys 73:2984–2995

    Article  CAS  Google Scholar 

  84. Tracy JC (1969) J Chem Phys 51:4852–4862

    Article  CAS  Google Scholar 

  85. Yeo YY, Vattuone L, King DA (1997) J Chem Phys 106:1990–1996

    Article  CAS  Google Scholar 

  86. Engel T (1978) J Chem Phys 69:373–385

    Article  CAS  Google Scholar 

  87. Behm R, Christmann K, Ertl G (1980) Surf Sci 99:320–340

    Article  CAS  Google Scholar 

  88. Voogt E, Coulier L, Gijzeman O, Geus J (1997) J Catal 169:359–364

    Article  CAS  Google Scholar 

  89. Guo X, Yates JT (1989) J Chem Phys 90:6761–6766

    Article  CAS  Google Scholar 

  90. Bowker M, Stone P, Bennett R, Perkins N (2002) Surf Sci 497:155–165

    Article  CAS  Google Scholar 

  91. Dropsch H, Baerns M (1997) Appl Catal A 158:163–183

    Article  CAS  Google Scholar 

  92. Huang S, Lin C, Wang J (2010) J Phys Chem C 114:9826–9834

    Article  CAS  Google Scholar 

  93. Christmann K (1991) In: Baumgärtel H, Franck EU, Grünbein W (eds) Topics in Physical Chemistry. Steinkopff Verlag; Springer-Verlag, Darmstadt, New York

    Google Scholar 

  94. Cattania MG, Penka V, Behm RJ, Christmann K, Ertl G (1983) Surf Sci 126:382–391

    Article  CAS  Google Scholar 

  95. Gdowski GE, Felter TE, Stulen RH (1987) Surf Sci 181:L147

    Article  CAS  Google Scholar 

  96. Conrad H, Ertl G, Latta EE (1974) Surf Sci 41:435–446

    Article  Google Scholar 

  97. Aldag A, Schmidt L (1971) J Catal 22:260–265

    Article  CAS  Google Scholar 

  98. Greeley J, Mavrikakis M (2005) J Phys Chem B 109:3460–3471

    Article  CAS  Google Scholar 

  99. Conrad H (1976) Wechselwirkung von Gasen mit einer Pd(111)-Oberfläche: PhD thesis, Universität München, München

  100. Stuve EM, Jorgensen SW, Madix RJ (1984) Surf Sci 146:179–198

    Article  CAS  Google Scholar 

  101. Clay JP, Greeley JP, Ribeiro FH, Delgass WN, Schneider WF (2014) J Catal 320:106–117

    Article  CAS  Google Scholar 

  102. Thiel PA, Madey TE (1987) Surf Sci Rep 7:211–385

    Article  CAS  Google Scholar 

  103. Heras J, Estiú G, Viscido L (1997) Appl Surf Sci 108:455–464

    Article  CAS  Google Scholar 

  104. Hodgson A, Haq S (2009) Surf Sci Rep 64:381–451

    Article  CAS  Google Scholar 

  105. Phatak AA, Delgass WN, Ribeiro FH, Schneider WF (2009) J Phys Chem C 113:7269–7276

    Article  CAS  Google Scholar 

  106. Liu T, Snyder C, Veser G (2007) Ind Eng Chem Res 46:9045–9052

    Article  CAS  Google Scholar 

  107. Maestri M (2012) In: Pignataro B (ed) New strategies in chemical synthesis and catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  108. Peuckert M (1985) J Phys Chem 89:2481–2486

    Article  CAS  Google Scholar 

  109. Bayer G, Wiedemann HG (1975) Thermochim Acta 11:79–88

    Article  CAS  Google Scholar 

  110. Bell WE, Inyard RE, Tagami M (1966) J Phys Chem 70:3735–3736

    Article  CAS  Google Scholar 

  111. Salomonsson P, Johansson S, Kasemo B (1995) Catal Lett 33:1–13

    Article  CAS  Google Scholar 

  112. Warner JS (1967) J Electrochem Soc 114:68–71

    Article  CAS  Google Scholar 

  113. Tarasov AL, Kustov LM (2013) Catal Ind 5:14–20

    Article  Google Scholar 

Download references

Acknowledgments

The authors deeply thank Prof. G. Groppi, Prof. A. Beretta and Prof. M. Maestri from Politecnico di Milano (Italy) for fruitful discussions and Dr. S. Colussi from Università di Udine (Italy) for sharing data on PdO–Pd transformation. Furthermore, the authors acknowledge Dr. C. Antinori and A. Ünal from Karlsruhe Institute of Technology (Germany) for technical support during in situ profile measurements. Financial support by the Helmholtz Research School Energy Related Catalysis is gratefully acknowledged. The authors also thank Dr. M. Votsmeier from UMICORE AG & Co KG for providing the catalyst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Deutschmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stotz, H., Maier, L. & Deutschmann, O. Methane Oxidation over Palladium: On the Mechanism in Fuel-Rich Mixtures at High Temperatures. Top Catal 60, 83–109 (2017). https://doi.org/10.1007/s11244-016-0717-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0717-5

Keywords

Navigation