Skip to main content
Log in

Adsorption and Dimerization of Late Transition Metal Atoms on the Regular and Defective Quartz (001) Surface

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Using a density functional theory approach with dispersion corrections, we have studied the adsorption properties of Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au monomers and dimers on the hydroxylated surface of α-quartz. We also considered the interaction with ≡Si–O paramagnetic centers (NBO centers) or with silanols (≡Si–O–H) to form a ≡Si–O–TMx (x = 1, 2) group and a 1/2 H2 molecule. On the hydroxylated surface, the TM atoms bind relatively weakly, while strong adsorption energies of 4–5 eV are found on the NBO center where due to the coupling of the unpaired electron of the ≡Si–O unit and the valence states of the metal atom. The TM atoms can react with the silanol groups releasing H2 and forming a stable ≡Si–O–TM complex with exothermic reactions. Dimers arriving from the gas-phase interact with the hydroxylated quartz surface with energies between 0.5 and 1.4 eV. If two TM atoms diffusing on the surface form a dimer, they release a large amount of energy which largely exceeds the dimer adsorption energy, leading to possible dimer desorption (with the exception of Pd). Also dimers bind strongly to NBO centers. Here the dimerization energies are considerably smaller than the desorption energy showing that the NBO sites act as effective nucleation centers. Differently from TM atoms, only some of the dimers react with ≡Si–O–H groups.

Graphical Abstract

Adsorption and nucleation of late transition metal atoms on quartz (001) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muller DA, Sorsch T, Moccio S, Baumann FH, Evans-Lutterodt K, Timp G (1999) Nature 399:758

    Article  CAS  Google Scholar 

  2. De Sanctis O, Gomez L, Pellegri N, Parodi C, Marajofsky A, Duran A (1990) J Non Cryst Solids 121:338

    Article  Google Scholar 

  3. Magruder RH, Osborne DH, Zuhr RA (1994) J Non Cryst Solids 176:299–303

    Article  CAS  Google Scholar 

  4. Sameia E, Taghizadeha M, Bahmanib M (2012) J Catal 96:128

    Google Scholar 

  5. Perez-Beltran S, Ramirez-Caballero GE, Balbuena PB (2015) Phys Chem C 119:16424

    Article  CAS  Google Scholar 

  6. McDowell MT, Lee WS, Harris JT, Korgel BA, Wang C, Nix WD, Cui Y (2013) Nano Lett 13:758–764

    Article  CAS  Google Scholar 

  7. Wang SB, Huang HF, Chattopadhyay S, Chang SJ, Chen RS, Chong CW, Hu MS, Chen LC, Chen KH (2013) NPG Asia Mater 5:e49

    Article  CAS  Google Scholar 

  8. Armelao L, Barreca D, Bottaro G, Gasparotto A, Gross S, Maragno C, Tondello E (2006) Coord Chem Rev 250:1294–1314

    Article  CAS  Google Scholar 

  9. Prieto G, Zečević J, Friedrich H, de Jong KP, de Jongh PE (2013) Nat Mater 12:34–39

    Article  CAS  Google Scholar 

  10. Moazami N, Mahmoudi H, Rahbar K, Panahifar P, Tsolakis A, Wyszynski ML (2015) Chem Eng Sci 134:374–384

    Article  CAS  Google Scholar 

  11. Baudouin D, Rodemerck U, Krumeich F, de Mallmann A, Szeto KC, Ménard H, Veyre L, Candy JP, Webbd PB, Thieuleux C, Copéret C (2013) J Catal 297:27–34

    Article  CAS  Google Scholar 

  12. Jabbour K, Kaydouh MN, El Hassan N, El Zakhem H, Jabbour K, Casale S, Massiani P, Davidson A (2015) Gas and oil conference (MedGO), International Mediterranean, IEEE

  13. Falconer JL, Zaǧli AE (1980) J Catal 62:280

    Article  CAS  Google Scholar 

  14. Aziza MAA, Jalila AA, Triwahyonob S, Muktid RR, Taufiq-Yape JH, Sazegarb MR (2014) Appl Catal B 147:359

    Article  Google Scholar 

  15. Gabrovska M, Krsti J, Tzvetkov P, Tenchev K, Shopska M, Vukeli N, Jovanov D (2011) Russ J Phys Chem A 85:2392

    Article  CAS  Google Scholar 

  16. Corvaisier F, Schuurman Y, Fecant A, Thomazeau C, Raybaud P, Toulhoat H, Farrusseng D (2013) J Catal 307:352–361

    Article  CAS  Google Scholar 

  17. Sitthisa S, Resasco DE (2011) Catal Lett 141:784–791

    Article  CAS  Google Scholar 

  18. Zhu K, Hu J, Richards R (2005) Catal Lett 100:195

    Article  CAS  Google Scholar 

  19. Haruta M (2004) J New Mater Electrochem Syst 7:163

    CAS  Google Scholar 

  20. Lia L, Hea S, Songa Y, Zhaoa J, Jia W, Aub CT (2012) J Catal 288:54–64

    Article  Google Scholar 

  21. Chen X, Wang S, Zhuang J, Qiao M, Fan K, He H (2004) J Catal 227:419–427

    Article  CAS  Google Scholar 

  22. Tauster SJ, Fung SC, Baker RTK, Horsley JA (1981) Science 211:1121

    Article  CAS  Google Scholar 

  23. Wallace WT, Min BK, Goodman DW (2005) Top Catal 34:17

    Article  CAS  Google Scholar 

  24. Lopez N, Pacchioni G, Maseras F, Illas F (1998) Chem Phys Lett 294:611–618

    Article  CAS  Google Scholar 

  25. Giordano L, Del Vitto A, Pacchioni G (2006) J Chem Phys 124:034701

    Article  Google Scholar 

  26. Gentili D, Foschi G, Valle F, Cavallini M, Biscarini F (2012) Chem Soc Rev 41:4430–4443

    Article  CAS  Google Scholar 

  27. Giermann AL, Thompson CV (2011) J Appl Phys 109:083520

    Article  Google Scholar 

  28. Thompson CV (2012) Annu Rev Mater Res 42:399–434

    Article  CAS  Google Scholar 

  29. Del Vitto A, Pacchioni G, Lim KH, Rösch N, Antonietti JM, Michalski M, Heiz U, Jones H (2005) J Phys Chem B 109:19876

    Article  Google Scholar 

  30. Weissenrieder J, Kaya S, Lu JL, Gao HJ, Shaikhutdinov S, Freund HJ, Sierka M, Todorova TK, Sauer J (2005) Phys Rev Lett 95:076103

    Article  CAS  Google Scholar 

  31. Lichtenstein L, Büchner C, Yang B, Shaikhutdinov S, Heyde M, Sierka M, Włodarczyk R, Sauer J, Freund HJ (2012) Angew Chem Int Ed 51:404

    Article  CAS  Google Scholar 

  32. Büchner C, Lichtenstein L, Stuckenholz S, Heyde M, Ringleb F, Sterrer M, Kaden WE, Giordano L, Pacchioni G, Freund HJ (2014) J Phys Chem C 118:20959–20969

    Article  Google Scholar 

  33. Hühn C, Wondraczek L, Sierka M (2015) Phys Chem Chem Phys 17:27488

    Article  Google Scholar 

  34. Kuo CL, Clancy P (2005) Modell Simul Mater Sci Eng 13:1309–1329

    Article  CAS  Google Scholar 

  35. Lopez N, Illas F, Pacchioni G (1999) J Am Chem Soc 121:813–821

    Article  CAS  Google Scholar 

  36. Koudriachova MV, Beckers JVL, de Leeuw SW (2001) Comput Mater Sci 20:381

    Article  CAS  Google Scholar 

  37. Rigagnese GM, De Vita A, Charlier JC, Gonze X, Car R (2000) Phys Rev B 61:13250

    Article  Google Scholar 

  38. de Leeuw NH, Higgins FM, Parker SC (1999) J Phys Chem B 103:1270

    Article  Google Scholar 

  39. Radzig VA (2000) Defects on activated silica surface. In: Pacchioni G, Skuja L, Griscom DL (eds) Defects in SiO2 and related dielectrics: science and technology., NATO science seriesKluwer, Dordrecht

    Google Scholar 

  40. Giordano L, Sushko PV, Pacchioni G, Shluger AL (2007) Phys Rev Lett 99:136801

    Article  Google Scholar 

  41. Lim KH, Zakharieva O, Shor AM, Rösch N (2007) Chem Phys Lett 444:280–286

    Article  CAS  Google Scholar 

  42. Rink WR, Odom AL (1991) Nucl Tracks Radiat Meas 18:163

    Article  CAS  Google Scholar 

  43. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  44. Kresse G, Hafner J (1994) A Phys Rev B 49:1425

    Google Scholar 

  45. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  46. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  48. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  49. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  50. Kresse G, Joubert J (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  51. Davidson E (1983) Methods in computational molecular physics. Plenum, New York

    Google Scholar 

  52. Liu B (1978) Report on workshop numerical algorithms in chemistry: algebraic methods

  53. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  54. Levien L, Prewitt CT, Weidner DJ (1980) Am Miner 65:920

    CAS  Google Scholar 

  55. Stoneham AM (1983) Appl Surf Sci 14:249–259

    Article  CAS  Google Scholar 

  56. Puigdollers AR, Schlexer P, Pacchioni G (2015) J Phys Chem C 119:15381

    Article  CAS  Google Scholar 

  57. Grimme S (2006) J Comp Chem 27:1787

    Article  CAS  Google Scholar 

  58. Tosoni S, Sauer J (2010) Phys Chem Chem Phys 12:14330–14340

    Article  CAS  Google Scholar 

  59. Dion M, Rydberg H, Schroder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  60. Chen HYT, Pacchioni G (2014) Phys Chem Chem Phys 16:21838–21845

    Article  CAS  Google Scholar 

  61. Goumans TPM, Wander A, Brown WA, Richard C, Catlow A (2007) Phys Chem Chem Phys 9:2146–2152

    Article  CAS  Google Scholar 

  62. Tang C, Zhu J, Lid Z, Zhu R, Zhou Q, Weia J, He H, Tao Q (2015) Appl Surf Sci 335:1161–1167

    Article  Google Scholar 

  63. Yates DE, Grieser F, Cooper R, Healy TW (1977) Aust J Chem 30:1655

    Article  CAS  Google Scholar 

  64. Tang C, Zhu J, Zhou Q, Wei J, Zhu R, He H (2014) J Phys Chem C 118:26249–26257

    Article  CAS  Google Scholar 

  65. Zhuravlev LT, Potapov VV (2006) Russ J Phys Chem 80:1119

    Article  CAS  Google Scholar 

  66. Zhuravlev LT (2000) Colloids Surf A 173:1

    Article  CAS  Google Scholar 

  67. Zhuravlev LT (1993) Colloids Surf A 74:71

    Article  CAS  Google Scholar 

  68. Zhuravlev LT (1987) Langmuir 3:316

    Article  CAS  Google Scholar 

  69. Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter 21:084204

    Article  CAS  Google Scholar 

  70. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908

    Article  CAS  Google Scholar 

  71. Henkelman G, Arnaldsson A, Jonsson H (2006) Comput Mater Sci 36:254–360

    Article  Google Scholar 

  72. Markovits A, Skalli MK, Minot C, Pacchioni G, Lopez N, Illas F (2001) J Chem Phys 115:8172–8177

    Article  CAS  Google Scholar 

  73. Wendt S, Kim YD, Goodman DW (2003) Prog Surf Sci 74:141

    Article  CAS  Google Scholar 

  74. Kim YD, Wei T, Goodman DW (2003) Langmuir 19:354

    Article  CAS  Google Scholar 

  75. Chung SC, Krüger S, Pacchioni G, Rösch N (1995) J Chem Phys 102:3695

    Article  CAS  Google Scholar 

  76. Giordano L, Di Valentin C, Goniakowski J, Pacchioni G (2004) PRL 92:096105

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the European Marie Curie Project CATSENSE (Grant Agreement Number: 607417) and from the Italian MIUR (FIRB Project RBAP115AYN “Oxides at the nanoscale: multifunctionality and applications”) is gratefully acknowledged. We also thank the COST Action CM1104 “reducible oxide chemistry, structure and functions”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Pacchioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlexer, P., Pacchioni, G. Adsorption and Dimerization of Late Transition Metal Atoms on the Regular and Defective Quartz (001) Surface. Top Catal 60, 459–470 (2017). https://doi.org/10.1007/s11244-016-0712-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0712-x

Keywords

Navigation