Skip to main content
Log in

Photo-Induced Morphology Changes at the RuO2(110)/TiO2(110) Surface: A Scanning Tunneling Microscopy Study

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Illumination by ultraviolet light and subsequent annealing to 600–700 K lead to characteristic morphological changes of a fully covering four to five monolayer thick RuO2(110) film on TiO2(110) and even to a decomposition of RuO2(110) islands on TiO2(110). These photo-induced degradation processes in a water atmosphere of 10−6 mbar and without water were studied with scanning tunneling microscopy and supplemented by X-ray photoelectron spectroscopy. The photo-assisted process is considered to be mediated by the underlying semiconducting TiO2(110) substrate through photo-generated hot electron–hole pairs. Due to energy band bending formed at the RuO2(110)/TiO2(110) heterojunction (Schottky barrier) the holes are selectively drawn towards the interface, where these can conduct oxidation reactions leading to modifications of the RuO2(110) surface and to the observed morphological degradation in the subsequent annealing step to 600 or 700 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turner JA (2004) Sustainable hydrogen production. Science 305:972–974

    Article  CAS  Google Scholar 

  2. Lewis NS, Nocera DG (2006) Power Planet 103:15729

    CAS  Google Scholar 

  3. Marshall J (2014) Solar energy: springtime for the artificial leaf. Nature 510:22–24

    Article  CAS  Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37

    Article  Google Scholar 

  5. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  6. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515

    Article  CAS  Google Scholar 

  7. Chen YT, Prange JD, Duehnen S, Park Y, Gunji M, Chidsey CED, McIntyre PC (2011) Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat Mater 10:539–544

    Article  CAS  Google Scholar 

  8. Scheuermann AG, Prange JD, Gunji M, Chidsey CED, McIntyre PC (2013) Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal-insulator-silicon anodes. Energ Environ Sci 6:2487

    Article  CAS  Google Scholar 

  9. Hu S, Shaner MA, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344:1005–1009

    Article  CAS  Google Scholar 

  10. Meada K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water—enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295

    Article  Google Scholar 

  11. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891

    Article  CAS  Google Scholar 

  12. Crabtree GW, Lewis NS (2007) Sol Energ Convers Phys Today 3:37–42

    Google Scholar 

  13. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys 120:10240–10246

    Article  CAS  Google Scholar 

  14. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253

    Article  CAS  Google Scholar 

  15. Luo JS, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Gratzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345:1593–1596

    Article  CAS  Google Scholar 

  16. Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798

    Article  CAS  Google Scholar 

  17. Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838–842

    Article  Google Scholar 

  18. Henderson MA (2011) A surface science perspective on TiO2 photocatalysis. Surf Sci Rep 66:185

    Article  CAS  Google Scholar 

  19. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5):53–229

    Article  CAS  Google Scholar 

  20. Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem Rev 106:4428

    Article  CAS  Google Scholar 

  21. Tributsch H (2008) Photovoltaic hydrogen generation. Int J Hydrog Energ 33(21):5911–5930

    Article  CAS  Google Scholar 

  22. Trasatti S (1990) Electrode kinetics and electrocatalysis of hydrogen and oxygen electrode reactions. In: Wendt H (ed) Electrochemical hydrogen technologies. Elsevier, Amsterdam

    Google Scholar 

  23. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Norskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem Cat Chem 3:1159

    CAS  Google Scholar 

  24. Amama PB, Itoh K, Murabayashi M (2014) Effect of RuO2 deposition on the activity of TiO2: photocatalytic oxidation of trichloroethylene in aqueous phase. J Mater Sci 39:4349

    Article  Google Scholar 

  25. Kawai T, Sakata T (1980) Dynamics of photoinduced surface-reactions on semiconductors by a pulsed-laser-dynamic-mass-spectrometer technique. Chem Phys Lett 72:87

    Article  CAS  Google Scholar 

  26. He YB, Langsdorf D, Li L, Over H (2015) Versatile model system for studying processes ranging from heterogeneous to photocatalysis: epitaxial RuO2(110) on TiO2(110). J Phys Chem C 119:2692–2702

    Article  CAS  Google Scholar 

  27. Meier DC, Rizzi GA, Granozzi G, Lai X, Goodman DW (2002) Ru3(CO)12 adsorption and decomposition on TiO2. Langmuir 18:698

    Article  CAS  Google Scholar 

  28. Chamber SA (2000) Epitaxial growth and properties of thin film oxides. Surf Sci Rep 39:105–180

    Article  Google Scholar 

  29. Yang F, Kundu S, Vidal AB, Graciani J, Ramirez PJ, Senanayake SD, Stacchila D, Evans J, Liu P, Sanz JF, Rodriguez JA (2011) Determining the behavior of RuOx nanoparticles in mixed-metal oxides: structural and catalytic properties of RuO2/TiO2(110) surfaces. Angew Chem 50:10198

    Article  CAS  Google Scholar 

  30. Herd B, Knapp M, Over H (2012) Atomic-scale insights into the initial oxidation of Ru(0001) using molecular oxygen: a scanning tunneling microscopy study. J Phys Chem C 116:24649–24660

    Article  CAS  Google Scholar 

  31. Over H (2002) Ruthenium dioxide, a fascinating material for atomic scale surface chemistry. Appl Phys A 75:37–44

    Article  CAS  Google Scholar 

  32. Kim YD, Seitsonen AP, Wendt S, Wang J, Fan C, Jacobi K, Over H, Ertl G (2001) Characterization of various oxygen species on an oxide surface: RuO2(110). J Phys Chem B 105:3752

    Article  CAS  Google Scholar 

  33. Wendt S, Seitsonen AP, Kim YD, Knapp M, Idriss H, Over H (2002) Complex Redox Chemistry on the RuO2(110) surface. Surf Sci 505:137–152

    Article  CAS  Google Scholar 

  34. Wendt S, Seitsonen AP, Over H (2003) Catalytic Activity of RuO2(110) in the Oxidation of CO. Catal Today 85:167–175

    Article  CAS  Google Scholar 

  35. Seitsonen AP, Over H (2009) Intimate interplay of theory and experiments in model catalysis. Surf Sci 603:1717–1723

    Article  CAS  Google Scholar 

  36. Lobo A, Conrad H (2003) Interaction of H2O with the RuO2(110) surface studied by HREELS and TDS. Surf Sci 523:279–286

    Article  CAS  Google Scholar 

  37. Knapp M, Crihan D, Seitsonen AP, Lundgren E, Resta A, Andersen JN, Over H (2007) Complex interaction of hydrogen with the RuO2(110) surface. J Phys Chem C 111:5363–5373

    Article  CAS  Google Scholar 

  38. Mu RT, Cantu DC, Glezakou VA, Lyubinetsky I, Rousseau R, Dohnalek Z (2015) Deprotonated water dimers: the building blocks of segmented water chains on rutile RuO2(110). J Phys C 119:23552–23558

    Google Scholar 

  39. Zhdanov VP, Kasemo B (1999) Substrate-mediated photoinduced chemical reactions on ultrathin metal films. Surf Sci 432:L599–L603

    Article  CAS  Google Scholar 

  40. Wilde M, Seiferth O, Al-Shamery K, Freund JJ (1999) Ultraviolet-laser induced desorption of NO from the Cr2O3(0001) surface: involvement of a precursor state? J Chem Phys 111:1158–1168

    Article  CAS  Google Scholar 

  41. Hasselbrink E (2008) Photochemistry on ultrathin metal films. Surf Sci 602:3184–3187

    Article  CAS  Google Scholar 

  42. Crihan D, Knapp M, Seitsonen AP, Over H (2006) Comment on “Interaction of hydrogen with RuO2(110) surfaces: activity differences between various oxygen species”. J Phys Chem B 110:22947

    Article  CAS  Google Scholar 

  43. Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551

    Article  CAS  Google Scholar 

  44. Uddin MT, Nicolas Y, Olivier C, Toupance T, Müller MM, Kleebe HJ, Rachut K, Ziegler J, Klein A, Jaegermann W (2013) Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations. J Phys Chem C 117:22098–22110

    Article  CAS  Google Scholar 

  45. Madey TE, Faradzhev NS, Yakshinskiy BV, Edwards NV (2006) Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography. Appl Surf Sci 253:1691–1708

    Article  CAS  Google Scholar 

  46. Over H, Farkas A, Mellau G, Korte C, Knapp M, Chandhok M, Fang M (2007) Long-term stability of Ru-based protection layers in extreme ultraviolet lithography: a surface science approach. J Vac Sci Technol 25:1123–1138

    Article  CAS  Google Scholar 

  47. Louis E, Yakshin AE, Tsarfati T, Bijkerk F (2011) Nanometer interface and materials control for multilayer EUV-optical applications. Prog Surf Sci 86:255–294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The DFG is acknowledged for terminating the the financial support through priority program SPP1613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Over.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herd, B., Abb, M. & Over, H. Photo-Induced Morphology Changes at the RuO2(110)/TiO2(110) Surface: A Scanning Tunneling Microscopy Study. Top Catal 60, 533–541 (2017). https://doi.org/10.1007/s11244-016-0711-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0711-y

Keywords

Navigation