Skip to main content
Log in

CO-Cleanup of Hydrogen-Rich Stream for LT PEM FC Feeding: Catalysts and Their Performance in Selective CO Methanation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the last two decades, CO preferential oxidation (CO PROX) and CO selective methanation (CO SMET) are assumed as the most feasible reactions for CO removal from H2-rich reformate for low temperature polymer electrolyte membrane fuel cells (LT PEMFC) feeding applications. Despite the existing advantages and disadvantages, both processes provide CO-cleanup to 10 ppm. This brief review illustrates the results obtained during a systematic study of catalysts, their performances and fundamental principles of the selective CO methanation reaction. The most attention is concentrated on Ru and Ni-containing catalysts and their operation in CO SMET reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmed S, Krumpelt M (2001) Hydrogen from hydrocarbon fuels for fuel cells. Int J Hydrogen Energy 26:291–301

    Article  CAS  Google Scholar 

  2. Pettersson LJ, Westerholm R (2001) State of the art of multi-fuel reformers for fuel cell vehicles: problem identification and research needs. Int J Hydrogen Energy 26:243–264

    Article  CAS  Google Scholar 

  3. Trimm DL, Önsan ZI (2001) Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev Sci Eng 43:31–84

    Article  CAS  Google Scholar 

  4. Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sustain Energy Rev 23:443–462

    Article  CAS  Google Scholar 

  5. Snytnikov PV, Sobaynin VA New challenging methods of hydrogen production and application (2006) Industrial catalysis in lectures (Supplement to the Catalysis in industry), (Kalvis, Moscow, RU) № 6:7–52. (In Russian)

  6. Mueller-Langer F, Tzimas E, Kaltschmitt M, Peteves S (2007) Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int J Hydrogen Energy 32:3797–3810

    Article  CAS  Google Scholar 

  7. Bartels JR, Pate MB, Olson NK (2010) An economic survey of hydrogen production from conventional and alternative energy sources. Int J Hydrogen Energy 35:8371–8384

    Article  CAS  Google Scholar 

  8. Kothari R, Buddhi D, Sawhney RL (2008) Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sustain Energy Rev 12:553–563

    Article  CAS  Google Scholar 

  9. Ashraf MA, Ercolino G, Specchia S, Specchia V (2014) Final step for CO syngas clean-up: comparison between CO-PROX and CO-SMET processes. Int J Hydrogen Energy 39:18109–18119

    Article  CAS  Google Scholar 

  10. Ercolino G, Ashraf MA, Specchia V, Specchia S (2015) Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation. Appl Energy 143:138–153

    Article  CAS  Google Scholar 

  11. Trimm DL (2005) Minimisation of carbon monoxide in a hydrogen stream for fuel cell application. Appl Catal A 296:1–11

    Article  CAS  Google Scholar 

  12. Farrauto RJ, Liu Y, Ruettinger W, Ilinich O, Shore L, Giroux T (2007) Precious metal catalysts supported on ceramic and metal monolithic structures for the hydrogen economy. Catal Rev 49:141–196

    Article  CAS  Google Scholar 

  13. Ivanova S, Laguna OH, Centeno MA, Eleta A, Montes M, Odriozola JA (2013) Microprocess technology for Hydrogen Purification. Renewable Hydrogen Technologies. Elsevier, Oxford, pp 225–243

    Chapter  Google Scholar 

  14. Kolb G (2013) Review: microstructured reactors for distributed and renewable production of fuels and electrical energy. Chem Eng Proc 65:1–44

    Article  CAS  Google Scholar 

  15. Snytnikov PV, Semin GL, Sidyakin MV, Sobyanin VA, Catalyst, method of preparation thereof, and a method treating hydrogen-containing gas mixtures to remove carbon monoxide. Russian Federation Patent 2323044 of 27.04.2008 (RU Patent Application 2006144826 of 18.12.2006)

  16. Zyryanova MM, Snytnikov PV, Amosov YuI, Venyaminov SA, Golosman EZ, Sobyanin VA (2010) Selective methanation of CO in the presence of CO2 in hydrogen-containing mixtures on nickel catalysts. Kinet Catal 51:907–913

    Article  CAS  Google Scholar 

  17. Zyryanova MM, Snytnikov PV, Amosov YuI, Kuzmin VA, Kirillov VA, Sobyanin VA (2011) Design, scale-out, and operation of a preferential CO methanation reactor with a nickel–ceria catalyst. Chem Eng J 176–177:106–113

    Article  Google Scholar 

  18. Miyao T, Shen W, Chen A, Higashiama K, Watanabe M (2014) Mechanistic study of the effect of chlorine on selective CO methanation over Ni alumina-based catalyst. Appl Catal A 486:187–192

    Article  CAS  Google Scholar 

  19. Zyryanova MM, Snytnikov PV, Gulyaev RV, Amosov YI, Boronin AI, Sobyanin VA (2014) Performance of Ni/CeO2 catalysts for selective CO methanation in hydrogen-rich gas. Chem Eng J 238:189–197

    Article  CAS  Google Scholar 

  20. Minyukova TP, Itenberg ISh, Khassin AA, Sipatrov AG, Dokuchits EV, Terentev VYa, Khristolyubov AP, Brizitskii OF, Yurieva TM (2007) Permeable composite material for compact apparatus for hydrogen-rich gases deep cleaning from CO. Chem Eng J 134:235–238

    Article  CAS  Google Scholar 

  21. Minyukova TP, Itenberg ISh, Demeshkina MP, Shtertser NV, Yurieva TM (2005) Selective methanation of carbon monoxide for hydrogen purification for fuel cells. Chem Sustain Dev 13:793–796

    CAS  Google Scholar 

  22. Kim YH, Park ED, Lee HC, Lee KH, Kim S (2007) Selective CO removal in the H2-rich stream through a double-bed system composed of non-noble metal catalysts. Stud Surf Sci Catal 167:171–176

    Article  CAS  Google Scholar 

  23. Lee CB, Cho S-H, Lee D-W, Hwang K-R, Park J-S, Kim S-H (2014) Combination of preferential CO oxidation and methanation in hybrid MRC (micro-channel reactor) for CO clean-up. Energy 78:421–425

    Article  CAS  Google Scholar 

  24. Xu G, Chen X, Zhang Z (2006) Temperature-staged methanation: an alternative method to purify hydrogen-rich fuel gas for PEFC. Chem Eng J 121:97–107

    Article  CAS  Google Scholar 

  25. Li Z, Mi W, Gong J, Lu Z, Xu L, Su Q (2008) CO removal by two-stage methanation for polymer electrolyte fuel cell. J Nat Gas Chem 17:359–364

    Article  CAS  Google Scholar 

  26. Li Z, Mi W, Liu S, Su Q (2010) CO deep removal with a method of two-stage methanation. Int J Hydrogen Energy 35:2820–2823

    Article  CAS  Google Scholar 

  27. Zhang Z-G, Xu G (2007) Thermally differential methanation—a novel method to realize highly selective removal of CO from H2-rich reformates. Catal Commun 8:1953–1956

    Article  CAS  Google Scholar 

  28. Kimura M, Miyao T, Komori S, Chen A (2010) Selective methanation of CO in hydrogen-rich gases involving large amounts of CO2 over Ru-modified Ni-Al mixed oxide catalysts. Appl Catal A 379:182–187

    Article  CAS  Google Scholar 

  29. Chen A, Miyao T, Higashiyama K, Yamashita H, Watanabe M (2010) High catalytic performance of ruthenium-doped mesoporous nickel-aluminum oxides for selective CO methanation. Angew Chem Int Ed 49:9895–9898

    Article  CAS  Google Scholar 

  30. Liu Q, Dong X, Mo X, Lin W (2008) Selective catalytic methanation of CO in hydrogen-rich gases over Ni/ZrO2 catalyst. J Nat Gas Chem 17:268–272

    Article  CAS  Google Scholar 

  31. Dai X, Liang J, Ma D, Zhang X, Zhao H, Zhao B, Guo Z, Kleitz F, Qiao S (2015) Large-pore mesoporous RuNi-doped TiO2-Al2O3 nanocomposites for highly efficient selective CO methanation in hydrogen-rich reformate gases. Appl Catal B 165:752–762

    Article  CAS  Google Scholar 

  32. Xiong J, Dong X, Li L (2012) CO selective methanation in hydrogen-rich gas mixtures over carbon nanotube supported Ru-based catalysts. J Nat Gas Chem 21:445–451

    Article  CAS  Google Scholar 

  33. Xiong J, Dong X, Song Y, Dong Y (2013) A high performance Ru-ZrO2/carbon nanotubes-Ni foam composite catalyst for selective CO methanation. J Power Sources 242:132–136

    Article  CAS  Google Scholar 

  34. Yoshida H, Watanabe K, Iwasa N, Fujita S, Arai M (2015) Selective methanation of CO in H2-rich gas stream by synthetic nickel-containing smectite based catalysts. Appl Catal B 162:93–97

    Article  CAS  Google Scholar 

  35. Baker B, Huebler J, Linden H, Meek J (1971) Process for selective removal by methanation of carbon monoxide from a mixture of gases containing carbon dioxide. United States Patent 3615164, 26 Oct 1971

  36. Rehmat A, Randhava S (1970) Selective methanation of carbon monoxide. Ind Eng Chem Res Dev 9:512–515

    Article  CAS  Google Scholar 

  37. Panagiotopoulou P, Kondariges DI, Verykios XE (2008) Selective methanation of CO over supported noble metal catalysts: effect of the nature of the metallic phase on catalytic performance. Appl Catal A 344:45–54

    Article  CAS  Google Scholar 

  38. Krämer M, Duisberg M, Stöwe K, Maier WF (2007) Highly selective CO methanation catalysts for the purification of hydrogen-rich gas mixtures. J Catal 251:410–422

    Article  Google Scholar 

  39. Takenaka S, Shimizu T, Otsuka K (2004) Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts. Int J Hydrogen Energy 29:1065–1073

    Article  CAS  Google Scholar 

  40. Panagiotopoulou P, Kondariges DI, Verykios XE (2009) Selective methanation of CO over supported Ru catalysts. Appl Catal B 88:470–478

    Article  CAS  Google Scholar 

  41. Urasaki K, Endo K, Takahiro T, Kikuchi R, Kojima T, Satokawa S (2010) Effect of support materials on the selective methanation of CO over Ru catalysts. Top Catal 53:707–711

    Article  CAS  Google Scholar 

  42. Galletti C, Saracco G, Specchia S, Specchia V (2007) CO methanation as alternative refinement process of CO abatement in H2-rich gas for PEM applications. Int J Chem R Eng 5: Article A110

  43. Dagle RA, Wang Y, Xia G-G, Strohm JJ, Holladay J, Palo DR (2007) Selective CO methanation catalysts for fuel processing applications. Appl Catal A 326:213–218

    Article  CAS  Google Scholar 

  44. Galletti C, Specchia S, Saracco G, Spechia V (2010) CO-selective methanation over Ru-γAl2O3 catalysts in H2-rich gas for PEM FC applications. Chem Eng Sci 65:590–596

    Article  CAS  Google Scholar 

  45. Mi W, Su Q, Feng J, Dang Y (2012) Effect of preparation conditions on the performance of CO preferential methanation catalyst. Phys Procedia 25:1285–1291

    Article  CAS  Google Scholar 

  46. Galletti C, Specchia S, Specchia V (2011) CO selective methanation in H2-rich gas for fuel cell application: microchannel reactor performance with Ru-based catalysts. Chem Eng J 167:616–621

    Article  CAS  Google Scholar 

  47. Djinović P, Galletti C, Specchia S, Specchia V (2011) Ru-based catalysts for CO selective methanation reaction in H2-rich gases. Catal Today 164:282–287

    Article  Google Scholar 

  48. Djinović P, Galletti C, Specchia S, Specchia V (2011) CO methanation over Ru-Al2O3 catalysts: effect of chloride doping on reaction activity and selectivity. Top Catal 54:1042–1053

    Article  Google Scholar 

  49. Jiménez V, Sánchez P, Panagiotopoulou P, Valverde JL, Romero A (2010) Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium nanofibers catalysts. Appl Catal A 390:35–44

    Article  Google Scholar 

  50. Tada S, Kikuchi R, Urasaki K, Satokawa S (2011) Effect of reduction pretreatment and support materials on selective CO methanation over supported Ru catalysts. Appl Catal A 404:149–154

    Article  CAS  Google Scholar 

  51. Tada S, Kikuchi R, Takagaki A, Sugawara T, Oyama ST, Satowaka S (2014) Effect of metal addition to Ru/TiO2 catalyst on selective CO methanation. Catal Today 232:16–21

    Article  CAS  Google Scholar 

  52. Golosman EZ, Efremov VN (2012) Industrial catalysts for the hydrogenation of carbon oxides. Catal Ind 5:36–55

    Google Scholar 

  53. Golosman EZ, Efremov VN, Kreyndel AM, Sobolevsky VS, Yakerson VI (1997) Hydrogenation of carbon oxides (methanation). Report 1. Synthesis and characteristics of nickel catalysts on different supports. Chem Ind 2:22–33 (in Russian)

    Google Scholar 

  54. Golosman EZ, Efremov VN, Kreyndel AM, Sobolevsky VS, Yakerson VI (1997) Hydrogenation of carbon oxides (methanation). Report 2. Activity of nickel industrial methanation NKM-line catalysts and its operation. Chem Ind 3:27–36 (in Russian)

    Google Scholar 

  55. Liu Q, Dong X, Liu Z (2014) Performance of Ni/Nano-ZrO2 catalysts for CO preferential methanation. Chin. Chem Eng 22:131–135

    Article  CAS  Google Scholar 

  56. Men Y, Kolb G, Zapf R, Hessel V, Löwe H (2007) Selective methanation of carbon oxides in a microchannel reactor—primary screening and impact of gas additives. Catal Today 125:81–87

    Article  CAS  Google Scholar 

  57. Minyukova TP, Baronskaya NA, Khasin AA, Yurieva TM (2008) Development of Cu and Ni-containing structural catalysts for purification of H2-containing gas from carbon monoxide by water gas shift and preferential methanation. Catalysis in Industry (Special edition) 24–30 (in Russian)

  58. Krämer M, Stöwe K, Duisberg M, Müller F, Reiser M, Sticher S, Maier WF (2009) The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst. Appl Catal A 369:42–52

    Article  Google Scholar 

  59. Liu Q, Dong X, Song Y, Lin W (2009) Removal of CO from reformed fuels by selective methanation over Ni-B-Zr-Oδ catalysts. J Nat Gas Chem 18:173–178

    Article  CAS  Google Scholar 

  60. Liu Q, Liao L, Liu Z, Dong X (2011) Effect of ZrO2 crystalline phase on the performance of Ni-B/ZrO2 catalyst for the CO selective methanation. Chin J Chem Eng 19:434–438

    Article  CAS  Google Scholar 

  61. Liu QH, Dong XF, Lin WM (2009) Highly selective CO methanation over amorphous Ni-Ru-B/ZrO2 catalyst. Chin Chem Lett 20:889–892

    Article  CAS  Google Scholar 

  62. Liu Q, Liu Z, Liao LW, Dong X (2010) Selective CO methanation over amorphous Ni-Ru-B/ZrO2 catalyst for hydrogen-rich gas purification. J Nat Gas Chem 19:497–502

    Article  CAS  Google Scholar 

  63. Miyao T, Tanaka J, Shen W, Hayashi K, Higashiyama K, Watanabe M (2015) Catalytic activity and durability of a mesoporous silica-coated Ni-alumina-based catalyst for selective CO methanation. Catal Today 251:81–87

    Article  CAS  Google Scholar 

  64. Miyao T, Sakurabayashi S, Shen W, Higashiyama K, Watanabe M (2015) Preparation and catalytic activity of a mesoporous silica-coated Ni-alumina-based catalyst for selective CO methanation. Catal Commun 58:93–96

    Article  CAS  Google Scholar 

  65. Tada S, Kikuchi R, Takagaki A, Sugawara T, Oyama ST, Urasaki K, Satowaka S (2013) Study of Ru-Ni/TiO2 catalysts for selective CO methanation. Appl Catal B 140–141:258–264

    Article  Google Scholar 

  66. Tada S, Kikuchi R, Wada K, Osada K, Akiyama K, Satokawa S, Kawashima Y (2014) Long-term durability of Ni/TiO2 and Ru-Ni/TiO2 catalysts for selective CO methanation. J Power Sources 264:59–66

    Article  CAS  Google Scholar 

  67. Urasaki K, Tanpo Y, Nagashima Y, Kikuchi R, Satokawa S (2013) Effects of preparation conditions of Ni/TiO2 catalysts for selective CO methanation in the reformate gas. Appl Catal A 452:174–178

    Article  CAS  Google Scholar 

  68. Konishcheva MV, Potemkin DI, Snytnikov PV, Zyryanova MM, Pakharukova VP, Simonov PA, Sobyanin VA (2015) Selective CO methanation in H2-rich stream over Ni-, Co- and Fe/CeO2: effect of metal and precursor nature. Int J Hydrogen Energy 40:14058–14063

    Article  CAS  Google Scholar 

  69. Potemkin DI, Konishcheva MV, Snytnikov PV, Sobyanin VA (2015) Selective CO methanation over ceria-supported Ni, Co and Fe catalysts. Abstracts of the XII European Congress on Catalysis—EuropaCat XII, Kazan, 30 Aug–04 Sep 2015

  70. Panagiotopoulou P, Kondariges DI, Verykios XE (2011) Mechanistic study of the selective methanation of CO over Ru/TiO2 catalyst: identification of active surface species and reaction pathways. J Phys Chem C 115:1220–1230

    Article  CAS  Google Scholar 

  71. Panagiotopoulou P, Kondarides DI, Verykios XE (2012) Mechanistic aspects of the selective methanation of CO over Ru/TiO2 catalyst. Catal Today 181:138–147

    Article  CAS  Google Scholar 

  72. Senanayake SD, Evans J, Agnoli S, Barrio L, Chen TL, Hrbek J, Rodriguez JA (2011) Water-gas shift and CO methanation reactions over Ni/CeO2 (111) catalysts. Top Catal 54:34–41

    Article  CAS  Google Scholar 

  73. Ramaroson E, Tempere JF, Guilleux MF (1992) Spectroscopic characterization and reactivity study of ceria-supported nickel catalysts. J Chem Soc, Faraday Trans 88:1211–1218

    Article  CAS  Google Scholar 

  74. Herrmann JM, Ramaroson E, Tempere JF, Guilleux MF (1989) Semiconductivity study of ceria-supported nickel related to its methanation catalytic activity. Appl Catal 53:117–134

    Article  CAS  Google Scholar 

  75. Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R (2012) Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int J Hydrogen Energy 37:5527–5531

    Article  CAS  Google Scholar 

  76. Araki M, Ponec V (1976) Methanation of carbon monoxide on nickel and nickel-copper alloys. J Catal 44:439–448

    Article  CAS  Google Scholar 

  77. de Leitenburg C, Trovarelli A, Kašpar J (1997) A temperature-programmed and transient kinetic study of CO2 activation and methanation over CeO2 supported noble metals. J Catal 166:98–107

    Article  Google Scholar 

  78. da Silva DCD, Letichevsky S, Borges LEP, Appel LG (2012) The Ni/ZrO2 catalyst and the methanation of CO and CO2. Int J Hydrogen Energy 37:8923–8928

    Article  Google Scholar 

  79. Aldana PAU, Ocampo F, Kolb K, Louis B, Thibault-Starzyk F, Daturi M, Bazin P, Thomas S, Roger AC (2013) Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catal Today 215:201–207

    Article  CAS  Google Scholar 

  80. Marwood M, Doepper R, Renken A (1997) In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO2. Appl Catal A 151:223–246

    Article  CAS  Google Scholar 

  81. Eckle S, Anfang H-G, Behm J (2011) Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases. J Phys Chem C 115:1361–1367

    Article  CAS  Google Scholar 

  82. Loc LC, Huan NM, Gaidai NA, Thoang HS, Nekrasov NV, Agafonov YuA, Lapidus AL (2011) Reaction mechanism of CO methanation on nickel catalysts, as studied by isotopic and nonstationary methods. Kinet Catal 52:749–755

    Article  CAS  Google Scholar 

  83. Loc LC, Huan NM, Gaidai NA, Thoang HS, Agafonov YuA, Nekrasov NV, Lapidus AL (2012) Kinetics of carbon monoxide methanation on nickel catalysts. Kinet Catal 53:384–394

    Article  CAS  Google Scholar 

  84. Underwood RP, Bennett CO (1984) The CO/H2 reaction over nickel-alumina studied by the transient method. J Catal 86:245–253

    Article  CAS  Google Scholar 

  85. Goodman DW, Kelley RD, Madey TE, Yates JT (1980) Kinetics of the hydrogenation of CO over a single crystal nickel catalyst. J Catal 63:226–234

    Article  CAS  Google Scholar 

  86. Kelley RD, Goodman DW (1982) Catalytic methanation over single crystal nickel and ruthenium: reaction kinetics on different crystal planes and the correlation of surface carbide concentration with reaction rate. Surf Sci 123:L743–L749

    Article  CAS  Google Scholar 

  87. Gupta NM, Londhe VP, Kamble VS (1997) Gas-uptake, methanation, and microcalorimetric measurements on the coadsorption of CO and H2 over polycrystalline Ru and a Ru/TiO2 catalyst. J Catal 169:423–437

    Article  CAS  Google Scholar 

  88. Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen JR (2005) Methanation of CO over Ni: mechanism and kinetics at high H2/CO ratios. J Phys Chem B 109:2432–2438

    Article  CAS  Google Scholar 

  89. Legras B, Ordomsky VV, Dujardin C, Virginie M, Khodakov AY (2014) Impact and detailed action of sulfure in syngas on methane synthesis on Ni/γ-Al2O3 catalyst. ACS Catal 4:2785–2791

    Article  CAS  Google Scholar 

  90. Fujita S, Terunuma H, Nakamura M, Takezawa N (1991) Mechanisms of methanation of CO and CO2 over Ni. Ind Eng Chem Res 30:1146–1151

    Article  CAS  Google Scholar 

  91. Mori T, Masuda H, Imai H (1982) Kinetics, isotope effects, and mechanism for the hydrogenation of carbon monoxide on supported nickel catalysts. J Phys Chem 86:2753–2760

    Article  CAS  Google Scholar 

  92. Mori T, Miyamoto A, Niizuma H, Takahashi N, Hattori T, Murakami Y (1986) Rate constants of surface reactions in methanation over Ru/Al2O3 catalyst as determined by pulse surface reaction rate analysis. J Phys Chem 90:109–113

    Article  CAS  Google Scholar 

  93. Huang CP, Richardson JT (1978) Alkali promotion of nickel catalysts for carbon monoxide methanation. J Catal 51:1–8

    Article  CAS  Google Scholar 

  94. Falconer JL, Zaǧli E (1980) Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. J Catal 62:280–285

    Article  CAS  Google Scholar 

  95. Weatherbee GD, Bartolomew CH (1982) Hydrogenation of CO2 on group VIII metals. II. Kinetics and mechanism of CO2 hydrogenation on nicke. J Catal 77:460–472

    Article  CAS  Google Scholar 

  96. Pan Q, Peng J, Sun T, Wang S, Wang S (2014) Insight into the reaction route of CO2 methanation: promotion effect of medium basic sites. Catal Commun 45:74–78

    Article  Google Scholar 

  97. Peebles DE, Goodman DW, White JM (1983) Methanation of carbon dioxide on Ni(100) and the effect of surface modifiers. J Phys Chem 87:4378–4387

    Article  CAS  Google Scholar 

  98. Snytnikov PV, Stadnichenko AI, Semin GL, Belyaev VD, Boronin AI, Sobyanin VA (2007) Copper–cerium oxide catalysts for the selective oxidation of carbon monoxide in hydrogen-containing mixtures: I. Catalytic activity. Kinet Catal 48:439–447

    Article  CAS  Google Scholar 

  99. Snytnikov PV, Stadnichenko AI, Semin GL, Belyaev VD, Boronin AI, Sobyanin VA (2007) Copper–cerium oxide catalysts for the selective oxidation of carbon monoxide in hydrogen-containing mixtures: II. Physicochemical Characterization of the Catalysts. Kinet Catal 48:448–456

    Article  CAS  Google Scholar 

  100. Snytnikov PV, Popova MM, Men Y, Rebrov EV, Kolb G, Hessel V, Schouten JC, Sobyanin VA (2008) Preferential CO oxidation over a copper–cerium oxide catalyst in a microchannel reactor. Appl Catal A: General 350:53–62

    Article  CAS  Google Scholar 

  101. Potemkin DI, Snytnikov PV, Pakharukova VP, Semin GL, Moroz EM, Sobyanin VA (2010) Copper–cerium oxide catalysts prepared by the Pechini method for CO removal from hydrogen-containing mixtures. Kinet Catal 51:119–125

    Article  CAS  Google Scholar 

  102. Snytnikov PV, Potemkin DI, Rebrov EV, Sobyanin VA, Hessel V, Schouten JC (2010) Design, scale-out, and operation of a microchannel reactor with a Cu/CeO2-x catalytic coating for preferential CO oxidation. Chem Eng J 160:3923–3929

    Article  Google Scholar 

  103. Potemkin DI, Snytnikov PV, Belyaev VD, Sobyanin VA (2011) The influence of internal diffusion on the process of CO preferential oxidation in hydrogen-rich gas mixture over oxide copper-cerium catalyst in a microchannel reactor. Kinet Catal 52:139–144

    Article  CAS  Google Scholar 

  104. Potemkin DI, Snytnikov PV, Belyaev VD, Sobyanin VA (2011) Preferential CO oxidation over Cu/CeO2-x catalyst: internal mass transport limitation. Chem Eng J 176–177:165–171

    Article  Google Scholar 

Download references

Acknowledgments

The work was partially supported by Grant V.44.2.9 in the part of kinetic studies and RFBR Grant 14-03-00457-a in the part of catalyst characterization and mechanism investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Snytnikov.

Additional information

Special issue “Energy-related Catalysis” (EuropaCat XII).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snytnikov, P.V., Zyryanova, M.M. & Sobyanin, V.A. CO-Cleanup of Hydrogen-Rich Stream for LT PEM FC Feeding: Catalysts and Their Performance in Selective CO Methanation. Top Catal 59, 1394–1412 (2016). https://doi.org/10.1007/s11244-016-0652-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0652-5

Keywords

Navigation