Skip to main content
Log in

α-d-Glucopyranose Adsorption on a Pd30 Cluster Supported on Boron Nitride Nanotube

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Boron nitride nanotube (BNNT) as an innovative support for carbohydrate transformation processes was evaluated, using density functional theory. The α-d-glucopyranose adsorption on a Pd30 cluster, supported on BNNT, was used to check both the local activity of topologically different metallic sites and the effects of the proximity of the BNNT surface to the same metallic sites. Detailed geometrical and electronic analyses performed on Pd30/BNNT and α-d-glucopyranose/Pd30/BNNT systems were discussed. It was observed that the deposition of the Pd30 cluster onto the BNNT support gives rise to an electronic rearrangement, determining a charge transfer from the support to the adsorbed metal cluster. The charge transfer, as shown by the analysis of molecular electrostatic potential, seems to generate electron-rich and electron-poor zones in the Pd30 cluster. The α-d-glucopyranose species, regardless the interaction geometry experienced, acts as an electron donor and preferentially adsorbs close to the electron-poor metal/support interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armaković SJ, Armaković S, Finĕur NL, Šibul F, Vione D, Šetrajčić JP, Abramović BF (2015) Influence of electron acceptors on the kinetics of metoprolol photocatalytic degradation in TiO2 suspension: a combined experimental and theoretical study. RSC Adv 5:54589–54604

    Article  Google Scholar 

  2. Becton M, Wang X (2015) Grain-size dependence of mechanical properties in polycrystalline boron–nitride: a computational study. Phys Chem Chem Phys 17:21894–21901

    Article  CAS  Google Scholar 

  3. Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870

    Article  CAS  Google Scholar 

  4. Bruix A, Rodriguez JA, Ramìrez PJ, Senanayake SD, Evans J, Park JB, Stacchiola D, Liu P, Hrbek J, Illas F (2012) A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J Am Chem Soc 134:8968–8974

    Article  CAS  Google Scholar 

  5. Campbell CT (2012) Catalyst-support interactions: electronic perturbations. Nat Chem 4:597–598

    Article  CAS  Google Scholar 

  6. Corchado JC, Sànchez ML, Aguilar MA (2004) Theoretical study of the relative stability of rotational conformers of α and β-d-glucopyranose in gas phase and aqueous solution. J Am Chem Soc 126:7311–7319

    Article  CAS  Google Scholar 

  7. Cortese R, Duca D, Sifontes Herrera VA, Murzin DY (2012) l-arabinose conformers adsorption on ruthenium surfaces: a DFT study. J Phys Chem C 116:14908–14916

    Article  CAS  Google Scholar 

  8. Cortese R, Schimmenti R, Armata N, Ferrante F, Prestianni A, Duca D, Murzin DY (2015) Investigation of polyol adsorption on Ru, Pd, and Re using vdW density functionals. J Phys Chem C 119:17182–17192

    Article  CAS  Google Scholar 

  9. Cramer CJ, Truhlar DG (1993) Quantum chemical conformational analysis of glucose in aqueous solution. J Am Chem Soc 115:5745–5753

    Article  CAS  Google Scholar 

  10. Crespo-Quesada M, Yoon S, Jin M, Prestianni A, Cortese R, Càrdenas-Lizana F, Duca D, Weidenkaff A, Kiwi-Minsker L (2015) Shape-dependence of Pd nanocrystal carburization during acetylene hydrogenation. J Phys Chem C 119:1101–1107

    Article  CAS  Google Scholar 

  11. Dapprich S, Komàromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct THEOCHEM 461–462:1–21

    Article  Google Scholar 

  12. Delidovich IV, Taran OP, Matvienko LG, Simonov AN, Simakova IL, Bobrovskaya AN, Parmon VN (2010) Selective oxidation of glucose over carbon-supported Pd and Pt catalysts. Catal Lett 140:14–21

    Article  CAS  Google Scholar 

  13. Duca D, Ferrante F, La Manna G (2007) Theoretical study of palladium cluster structures on carbonaceous supports. J Phys Chem C 111:5402–5408

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheese-man JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  15. Gao N, Fang X (2015) Synthesis and development of graphene–inorganic semiconductor nanocomposites. Chem Rev 115(16):8294–8343

    Article  CAS  Google Scholar 

  16. Hermans S, Diverchy C, Dubois V, Devillers M (2014) Pd nanoparticles prepared by grafting of Pd complexes on phenol-functionalized carbon supports for liquid phase catalytic applications. Appl Catal A 474:263–271

    Article  CAS  Google Scholar 

  17. Kacprzak KA, Czekaj I, Mantzaras J (2012) DFT studies of oxidation routes for Pd9 clusters supported on γ-alumina. Phys Chem Chem Phys 14:10243–10247

    Article  CAS  Google Scholar 

  18. Kim KS, Kingston CT, Hrdina A, Jakubinek MB, Guan J, Plunkett M, Simard B (2014) Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies. ACS Nano 8:6211–6220

    Article  CAS  Google Scholar 

  19. Koitz R, Norskov JK, Studt F (2015) A systematic study of metal-supported boron nitride materials for the oxygen reduction reaction. Phys Chem Chem Phys 17:12722–12727

    Article  CAS  Google Scholar 

  20. Lin CA, Wu JCS, Pan JW, Yeh CT (2002) Characterization of boron–nitride-supported Pt catalysts for the deep oxidation of benzene. J Catal 210:39–45

    Article  CAS  Google Scholar 

  21. Mager N, Meyer N, Léonard AF, Job N, Devillers M, Hermans S (2014) Functionalization of carbon xerogels for the preparation of palladium supported catalysts applied in sugar transformations. Appl Catal B 148–149:424–435

    Article  Google Scholar 

  22. Meyer N, Bekaert K, Pirson D, Devillers M, Hermans S (2012) Boron nitride as an alternative support of Pd catalysts for the selective oxidation of lactose. Catal Commun 29:170–174

    Article  CAS  Google Scholar 

  23. Meyer N, Pirson D, Devillers M, Hermans S (2013) Particle size effects in selective oxidation of lactose with Pd/h-BN catalysts. Appl Catal A 467:463–473

    Article  CAS  Google Scholar 

  24. Meyer N, Devillers M, Hermans S (2015) Boron nitride supported Pd catalysts for the hydrogenation of lactose. Catal Today B 241:200–207

    Article  CAS  Google Scholar 

  25. Murzin DY (1995) On the kinetic interpretation of metal-support interaction. React Kinet Catal Lett 55:275–281

    Article  CAS  Google Scholar 

  26. Pacchioni G (2013) Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Phys Chem Chem Phys 15:1737–1757

    Article  CAS  Google Scholar 

  27. Postole G, Gervasini A, Guimon C, Auroux A, Bonnetot B (2006) Influence of the preparation method on the surface characteristics and activity of boron–nitride-supported noble metal catalysts. J Phys Chem B 110:12572–12580

    Article  CAS  Google Scholar 

  28. Prestianni A, Ferrante F, Simakova OA, Duca D, Murzin DY (2013) Oxygen-assisted hydroxymatairesinol dehydrogenation: a selective secondary-alcohol oxidation over a gold catalyst. Chem Eur J 19:4577–4585

    Article  CAS  Google Scholar 

  29. Prestianni A, Crespo-Quesada M, Cortese R, Ferrante F, Kiwi-Minsker L, Duca D (2014) Structure sensitivity of 2-methyl-3-butyn-2-ol hydrogenation on Pd: computational and experimental modeling. J Phys Chem C 118:3119–3128

    Article  CAS  Google Scholar 

  30. Prestianni A, Ferrante F, Sulman EM, Duca D (2014) Density functional theory investigation on the nucleation and growth of small palladium clusters on a hyper-cross-linked polystyrene matrix. J Phys Chem C 118:21006–21013

    Article  CAS  Google Scholar 

  31. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  32. Schimmenti R, Cortese R, Ferrante F, Prestianni A, Duca D (2016) Growth of sub-nanometric palladium clusters on boron nitride nanotubes: a DFT study. Phys Chem Chem Phys 18:1750–1757

    Article  CAS  Google Scholar 

  33. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394

    Article  CAS  Google Scholar 

  34. Terrones M, Romo-Herrera JM, Cruz-Silva E, Lòpez-Urìas F, Munõz- Sandoval E, Velàzquez-Salazar JJ, Terrones H, Bando Y, Golberg D (2007) Pure and doped boron nitride nanotubes. Mater Today 10:30–38

    Article  CAS  Google Scholar 

  35. Tokarev AV, Murzina EV, Kuusisto J, Mikkola J-P, Eranen K, Murzin DY (2006) Kinetic behaviour of electrochemical potential in three- phase heterogeneous catalytic oxidation reactions. J Mol Catal A 255:199–208

    Article  CAS  Google Scholar 

  36. Venezia AM, Duca D, Floriano MA, Deganello G, Rossi A (1992) Chemical effect on the XPS spectra of the valence band and on O KLL and Pd MNN Auger spectra in pumice-supported catalysts. Surf Interface Anal 18:619–622

    Article  CAS  Google Scholar 

  37. Wang YG, Yoon Y, Glezakou VA, Li J, Rousseau R (2013) The role of reducible oxide-metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J Am Chem Soc 135:10673–10683

    Article  CAS  Google Scholar 

  38. Willinger MG, Zhang W, Bondarchuk O, Shaikhutdinov S, Freund HJ, Schlögl R (2014) A case of strong metal-support interactions: combining advanced microscopy and model systems to elucidate the atomic structure of interfaces. Angew Chem Int Ed 53:5998–6001

    Article  CAS  Google Scholar 

  39. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM–B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  40. Zhang J, Alexandrova AN (2012) Double σ–aromaticity in a surface-deposited cluster: Pd4 on TiO2 (110). J Phys Chem Lett 3:751–754

    Article  CAS  Google Scholar 

  41. Zhang L, Wu P, Sullivan M (2011) Hydrogen adsorption on Rh, Ni, and Pd functionalized single-walled boron nitride nanotubes. J Phys Chem C 115:4289–4296

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Duca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prestianni, A., Cortese, R., Ferrante, F. et al. α-d-Glucopyranose Adsorption on a Pd30 Cluster Supported on Boron Nitride Nanotube. Top Catal 59, 1178–1184 (2016). https://doi.org/10.1007/s11244-016-0638-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0638-3

Keywords

Navigation