Skip to main content
Log in

Oxidation of Small Supported Platinum-based Nanoparticles Under Near-Ambient Pressure Exposure to Oxygen

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The investigation of nanocatalysts under their working conditions of pressures and temperatures represents a real strategy toward a realistic understanding of their chemical reactivity and related issues. Additionally, the reduction of Pt load in the catalysts while maintaining their optimum performances is essential to large scale practical applications. Here, we show that small PtZn bimetallic nanoparticles (NPs) supported on the rutile and reduced TiO2(110)-(1 × 1) surface can be prepared by a two step consecutive deposition process where Pt was deposited first and followed by Zn. In situ synchrotron-based near ambient pressure photoemission spectroscopy experiments are used to monitor the evolution of the oxidation states and surface elemental composition of pure Pt and PtZn NPs under high exposure to O2 pressure. The formation of stable Pt surface oxide was evidenced for both pure and PtZn NPs. While a sizeable encapsulation of pure Pt NPs by TiOx was seen after annealing at 440 K under 1 mbar of O2, no such effect was noticed for PtZn NPs. The formation of a zinc oxide layer on PtZn NPs enhances the stability of the NPs and induces a partial reduction of the TiO2(110) surface. Spontaneous formation of a Pt–Zn alloy phase at room temperature was seen in PtZn NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seriani N, Mittendorfer F (2008) Platinum-group and noble metals under oxidizing conditions. J Phys Condens Matter 20:184023

    Article  Google Scholar 

  2. Gandhi HS, Graham GW, McCabe RW (2003) Automotive exhaust catalysis. J Catal 216(1–2):433–442

    Article  CAS  Google Scholar 

  3. Lee I, Zaera F (2013) Nanoparticle shape selectivity in catalysis: butene isomerization and hydrogenation on platinum. Top Catal 56:1284–1298

    Article  CAS  Google Scholar 

  4. Holme TP, Prinz FB (2011) Nonprecious metal catalysts for low temperature solid oxide fuel cells. J Phys Chem C 115:11641–11648

    Article  CAS  Google Scholar 

  5. Yi LH, Wei W, Zhao CX, Yang CG, Tian L, Liu J, Wang XY (2015) Electrochemical oxidation of sodium borohydride on carbon supported Pt–Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell. Electrochim Acta 158:209–218

    Article  CAS  Google Scholar 

  6. Casado-Rivera E, Volpe DJ, Alden L, Lind C, Downie C, Vazquez-Alvarez T, Angelo ACD, DiSalvo FJ, Abruna HD (2004) Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J Am Chem Soc 126:4043–4049

    Article  CAS  Google Scholar 

  7. Holton OT, Stevenson JW (2013) The role of platinum in proton exchange membrane fuel cells evaluation of platinum’s unique properties for use in both the anode and cathode of a proton exchange membrane fuel cell. Platin Met Rev 57:259–271

    Article  Google Scholar 

  8. Jennings PC, Pollet BG, Johnston RL (2012) Electronic properties of pt-ti nanoalloys and the effect on reactivity for use in PEMFCs. J Phys Chem C 116:15241–15250

    Article  CAS  Google Scholar 

  9. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39

    Article  CAS  Google Scholar 

  10. Michalak WD, Somorjai GA (2013) Catalysis in energy generation and conversion: how insight into nanostructure, composition, and electronic structure leads to better catalysts (perspective). Top Catal 18–20:1611–1622

    Article  Google Scholar 

  11. Liu ZM, Ma LL, Zhang J, Hongsirikarn K, Goodwin JG (2013) Pt alloy electrocatalysts for proton exchange membrane fuel cells: a review. Catal Rev Sci Eng 55:255–288

    Article  CAS  Google Scholar 

  12. Ertl G, Knozinger H, Schuth F, Weitkamp J (eds) (2008) Handbook of heterogeneous catalysis, vol 1. Wiley, Weinheim

  13. Lopes PP, Freitas KS, Ticianelli EA (2010) CO tolerance of PEMFC anodes: mechanisms and electrode designs. Electrocatal 1:200–212

    Article  CAS  Google Scholar 

  14. Ehteshami SMM, Chan SH (2013) A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells. Electrochim Acta 93:334–345

    Article  CAS  Google Scholar 

  15. Balbuena PB, Callejas-Tovar R, Hirunsit P, de la Hoz JMM, Ma Y, Ramirez-Caballero GE (2012) Evolution of Pt and Pt-alloy catalytic surfaces under oxygen reduction reaction in acid medium. Top Catal 55:322–335

    Article  CAS  Google Scholar 

  16. Coleman EJ, Co AC (2014) Galvanic displacement of Pt on nanoporous copper: an alternative synthetic route for obtaining robust and reliable oxygen reduction activity. J Catal 316:191–200

    Article  CAS  Google Scholar 

  17. Loukrakpam R, Luo J, He T, Chen YS, Xu ZC, Njoki PN, Wanjala BN, Fang B, Mott D, Yin J, Klar J, Powell B, Zhong CJ (2011) Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: an assessment of the structural and electrocatalytic properties. J Phys Chem C 115:1682–1694

    Article  CAS  Google Scholar 

  18. Ou LH (2014) The origin of enhanced electrocatalytic activity of Pt-M (M = Fe Co, Ni, Cu, and W) alloys in PEM fuel cell cathodes: a DFT computational study. Comput Theor Chem 1048:69–76

    Article  CAS  Google Scholar 

  19. Hammer B, Norskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71–129

    CAS  Google Scholar 

  20. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    Article  CAS  Google Scholar 

  21. Chen ZX, Neyman KM, Gordienko AB, Rosch N (2003) Surface structure and stability of PdZn and PtZn alloys: density-functional slab model studies. Phys Rev B 68:075417

    Article  Google Scholar 

  22. Kim YS, Jeon SH, Bostwick A, Rotenberg E, Ross PN, Stamenkovic VR, Markovic NM, Noh TW, Han S, Mun BS (2013) Role of transition metal in fast oxidation reaction on the Pt-3 TM (111) (TM = Ni, Co) surfaces. Adv Energy Mater 3:1257–1261

    Article  CAS  Google Scholar 

  23. Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46:285–305

    Article  CAS  Google Scholar 

  24. Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278

    Article  CAS  Google Scholar 

  25. Avasarala B, Moore R, Haldar P (2010) Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions. Electrochim Acta 55:4765–4771

    Article  CAS  Google Scholar 

  26. Liu X, Chen J, Liu G, Zhang L, Zhang HM, Yi BL (2010) Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts. J Power Sources 195:4098–4103

    Article  CAS  Google Scholar 

  27. Shahgaldi S, Hamelin J (2015) Stability study of ultra-low Pt thin film on TiO2-C core-shell structure and TiO2 encapsulated in carbon nanospheres as cathode catalyst in PEMFC. Fuel 150:645–655

    Article  CAS  Google Scholar 

  28. Ruiz Camacho B, Morais C, Valenzuela MA, Alonso-Vante N (2013) Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites. Catal Today 202:36–43

    Article  CAS  Google Scholar 

  29. Gebauer C, Fischer J, Wassner M, Diemant T, Bansmann J, Husing N, Behm RJ (2014) Novel N, C doped Ti(IV)-oxides as Pt-free catalysts for the O-2 reduction reaction. Electrochim Acta 146:335–345

    Article  CAS  Google Scholar 

  30. Huang K, Sasaki K, Adzic RR, Xing YC (2012) Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. J Mater Chem 22:16824–16832

    Article  CAS  Google Scholar 

  31. Kumar A, Ramani V (2014) Strong metal support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts. ACS Catal 4:1516–1525

    Article  CAS  Google Scholar 

  32. Shi FF, Baker LR, Hervier A, Somorjai GA, Komvopoulos K (2013) Tuning the electronic structure of titanium oxide support to enhance the electrochemical activity of platinum nanoparticles. Nano Lett 13:4469–4474

    Article  CAS  Google Scholar 

  33. Mentus SV (2005) Electrochemical response of a composite Pt/TiO2 layer formed potentiodynamically on titanium surfaces. Electrochim Acta 50:3609–3615

    Article  CAS  Google Scholar 

  34. Diebold U, Li SC, Schmid M (2010) Oxide surface science. Annu Rev Phys Chem 61:129–148

    Article  CAS  Google Scholar 

  35. Pang CL, Lindsay R, Thornton G (2008) Chemical reactions on rutile TiO2(110). Chem Soc Rev 37:2328–2353

    Article  CAS  Google Scholar 

  36. Shaikhutdinov S, Freund HJ (2012) Ultrathin oxide films on metal supports: structure-reactivity relations. Annu Rev Phys Chem 63:619–633

    Article  CAS  Google Scholar 

  37. Fu Q, Li WX, Yao YX, Liu HY, Su HY, Ma D, Gu XK, Chen LM, Wang Z, Zhang H, Wang B, Bao XH (2010) Interface-confined ferrous centers for catalytic oxidation. Science 328:1141

    Article  CAS  Google Scholar 

  38. Guo XG, Fu Q, Ning YX, Wei MM, Li MR, Zhang S, Jiang Z, Bao XH (2012) Ferrous centers confined on core-shell nanostructures for low-temperature CO oxidation. J Am Chem Soc 134:12350–12353

    Article  CAS  Google Scholar 

  39. Yang H (2011) Platinum-based electrocatalysts with core-shell nanostructures. Angew Chem Int Ed 50:2674–2676

    Article  CAS  Google Scholar 

  40. Kang YJ, Pyo JB, Ye XC, Gordon TR, Murray CB (2012) Synthesis, shape control, and methanol electro-oxidation properties of Pt–Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 6:5642–5647

    Article  CAS  Google Scholar 

  41. Grove WR (1839) Note sur une pile voltaïque d’une grande énergie, construite par M. Grove; communication de M. Becquerel. Comptes Rendus 8:497

    Google Scholar 

  42. Freund HJ, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37:2224–2242

    Article  CAS  Google Scholar 

  43. Martynova Y, Liu BH, McBriarty ME, Groot IMN, Bedzyk MJ, Shaikhutdinov S, Freund HJ (2013) CO oxidation over ZnO films on Pt(111) at near-atmospheric pressures. J Catal 301:227–232

    Article  CAS  Google Scholar 

  44. Pan Q, Liu BH, McBriarty ME, Martynova Y, Groot IMN, Wang S, Bedzyk MJ, Shaikhutdinov S, Freund HJ (2014) Reactivity of ultra-thin ZnO films supported by Ag(111) and Cu(111): a comparison to ZnO/Pt(111). Catal Lett 144:648–655

    Article  CAS  Google Scholar 

  45. Sun YN, Qin ZH, Lewandowski M, Carrasco E, Sterrer M, Shaikhutdinov S, Freund HJ (2009) Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J Catal 266:359–368

    Article  CAS  Google Scholar 

  46. Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) CO oxidation as a prototypical reaction for heterogeneous processes. Angew Chem Int Ed 50:10064–10094

    Article  CAS  Google Scholar 

  47. Salmeron M, Schlogl R (2008) Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf Sci Rep 63:169–199

    Article  CAS  Google Scholar 

  48. Zhang SR, Nguyen L, Zhu Y, Zhan SH, Tsung CK, Tao F (2013) In-situ studies of nanocatalysis. Acc Chem Res 46:1731–1739

    Article  CAS  Google Scholar 

  49. Freund HJ (2010) Model studies in heterogeneous catalysis. Chem Eur J 16:9384

    Article  CAS  Google Scholar 

  50. Ogletree DF, Bluhm H, Hebenstreit ED, Salmeron M (2009) Photoelectron spectroscopy under ambient pressure and temperature conditions. Nucl Instrum Methods Phys Res Sect A 601:151–160

    Article  Google Scholar 

  51. Gross E, Krier JM, Heinke L, Somorjai GA (2012) Building bridges in catalysis science. monodispersed metallic nanoparticles for homogeneous catalysis and atomic scale characterization of catalysts under reaction conditions. Top Catal 55:13–23

    Article  CAS  Google Scholar 

  52. Crumlin EJ, Bluhm H, Liu Z (2013) In situ investigation of electrochemical devices using ambient pressure photoelectron spectroscopy. J Electron Spectrosc Relat Phenom 190:84–92

    Article  CAS  Google Scholar 

  53. Ozensoy E, Vovk EI (2013) In-situ vibrational spectroscopic studies on model catalyst surfaces at elevated pressures. Top Catal 56:1569–1592

    Article  CAS  Google Scholar 

  54. Hendriksen BLM, Frenken JWM (2002) CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys Rev Lett 89:046101

    Article  CAS  Google Scholar 

  55. Chen MS, Zheng YP, Wan HL (2013) Kinetics and active surfaces for CO oxidation on Pt-group metals under oxygen rich conditions. Top Catal 56:1299–1313

    Article  CAS  Google Scholar 

  56. NAP-XPS at TEMPO Beamline, SOLEIL Synchrotron, France (2014). http://www.synchrotron-soleil.fr/Recherche/LignesLumiere/TEMPO

  57. Grass ME, Karlsson PG, Aksoy F, Lundqvist M, Wannberg B, Mun BS, Hussain Z, Liu Z (2010) New ambient pressure photoemission endstation at advanced light source beamline 9.3.2. Rev Sci Instrum 81(5):053106

    Article  Google Scholar 

  58. Schnadt J, Knudsen J, Andersen JN, Siegbahn H, Pietzsch A, Hennies F, Johansson N, Martensson N, Ohrwall G, Bahr S, Mahl S, Schaff O (2012) The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab. J Synchrotron Rad 19:701–704

    Article  CAS  Google Scholar 

  59. Vendelbo SB, Elkjaer CF, Falsig H, Puspitasari I, Dona P, Mele L, Morana B, Nelissen BJ, van Rijn R, Creemer JF, Kooyman PJ, Helveg S (2014) Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat Mater 13:884–890

    Article  CAS  Google Scholar 

  60. Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Bluhm H, Salmeron M, Somorjai GA (2010) Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 327:850–853

    Article  CAS  Google Scholar 

  61. Butcher DR, Grass ME, Zeng ZH, Aksoy F, Bluhm H, Li WX, Mun BS, Somorjai GA, Liu Z (2011) In situ oxidation study of Pt(110) and its interaction with CO. J Am Chem Soc 133:20319–20325

    Article  CAS  Google Scholar 

  62. Bandlow J, Kaghazchi P, Jacob T, Papp C, Trankenschuh B, Streber R, Lorenz MPA, Fuhrmann T, Denecke R, Steinruck HP (2011) Oxidation of stepped Pt(111) studied by X-ray photoelectron spectroscopy and density functional theory. Phys Rev B 83:174107

    Article  Google Scholar 

  63. Miller DJ, Oberg H, Kaya S, Casalongue HS, Friebel D, Anniyev T, Ogasawara H, Bluhm H, Pettersson LGM, Nilsson A (2011) Oxidation of Pt(111) under near-ambient conditions. Phys Rev Lett 107:195502

    Article  CAS  Google Scholar 

  64. Zhu ZW, Tao F, Zheng F, Chang R, Li YM, Heinke L, Liu Z, Salmeron M, Somorjai GA (2012) Formation of nanometer-sized surface platinum oxide clusters on a stepped Pt(557) single crystal surface induced by oxygen: a high-pressure STM and ambient-pressure XPS Study. Nano Lett 12:1491–1497

    Article  CAS  Google Scholar 

  65. Zhu ZW, Melaet G, Axnanda S, Alayoglu S, Liu Z, Salmeron M, Somorjai GA (2013) Structure and chemical state of the Pt(557) surface during hydrogen oxidation reaction studied by in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. J Am Chem Soc 135:12560–12563

    Article  CAS  Google Scholar 

  66. Porsgaard S, Jiang P, Borondics F, Wendt S, Liu Z, Bluhm H, Besenbacher F, Salmeron M (2011) Charge state of gold nanoparticles supported on titania under oxygen pressure. Angew Chem Int Ed 50:2266–2269

    Article  CAS  Google Scholar 

  67. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53

    Article  CAS  Google Scholar 

  68. Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Oxygen vacancies on TiO2(110) and their interaction with H2O and O-2: a combined high-resolution STM and DFT study. Surf Sci 598:226–245

    Article  CAS  Google Scholar 

  69. Matthey D, Wang JG, Wendt S, Matthiesen J, Schaub R, Laegsgaard E, Hammer B, Besenbacher F (2007) Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 315:1692

    Article  CAS  Google Scholar 

  70. Matthiesen J, Wendt S, Hansen JO, Madsen GKH, Lira E, Galliker P, Vestergaard EK, Schaub R, Laegsgaard E, Hammer B, Besenbacher F (2009) Observation of all the intermediate steps of a chemical reaction on an oxide surface by scanning tunneling microscopy. ACS Nano 3:517–526

    Article  CAS  Google Scholar 

  71. Rieboldt F, Vilhelmsen LB, Koust S, Lauritsen JV, Helveg S, Lammich L, Besenbacher F, Hammer B, Wendt S (2014) Nucleation and growth of Pt nanoparticles on reduced and oxidized rutile TiO2 (110). J Chem Phys 141:214702

    Article  CAS  Google Scholar 

  72. Galhenage RP, Yan H, Tenney SA, Park N, Henkelman G, Albrecht P, Mullins DR, Chen DA (2013) Understanding the nucleation and growth of metals on TiO2: co Compared to Au, Ni, and Pt. J Phys Chem C 117:7191–7201

    Article  CAS  Google Scholar 

  73. Diebold U, Pan JM, Madey TE (1995) Ultrathin metal-film growth on Tio 2(110)—an overview. Surf Sci 331:845–854

    Article  Google Scholar 

  74. Gan S, Liang Y, Baer DR, Grant AW (2001) Effects of titania surface structure on the nucleation and growth of Pt nanoclusters on rutile TiO2(110). Surf Sci 475:159–170

    Article  CAS  Google Scholar 

  75. Haas P, Tran F, Blaha P (2009) Calculation of the lattice constant of solids with semilocal functionals. Phys Rev B 79:085104

    Article  Google Scholar 

  76. Rieboldt F, Helveg S, Bechstein R, Lammich L, Besenbacher F, Lauritsen JV, Wendt S (2014) Formation and sintering of Pt nanoparticles on vicinal rutile TiO2 surfaces. Phys Chem Chem Phys 16:21289–21299

    Article  CAS  Google Scholar 

  77. Park JB, Conner SF, Chen DA (2008) Bimetallic Pt-Au clusters on TiO2(110): growth, surface composition, and metal-support interactions. J Phys Chem C 112:5490–5500

    Article  CAS  Google Scholar 

  78. Sanchez-Sanchez C, Martin-Gago JA, Lopez MF (2013) Small Pt nanoparticles on the TiO2 (110)-(1 × 2) surface. Surf Sci 607:159–163

    Article  CAS  Google Scholar 

  79. Dulub O, Hebenstreit W, Diebold U (2000) Imaging cluster surfaces with atomic resolution: the strong metal-support interaction state of Pt supported on TiO2(110). Phys Rev Lett 84:3646–3649

    Article  CAS  Google Scholar 

  80. Tenney SA, He W, Ratliff JS, Mullins DR, Chen DA (2011) Characterization of Pt-Au and Ni-Au clusters on TiO2(110). Top Catal 54:42–55

    Article  CAS  Google Scholar 

  81. Bonanni S, Ait-Mansour K, Brune H, Harbich W (2011) Overcoming the strong metal-support interaction state: CO oxidation on Tio(2)(110)-supported Pt nanoclusters. Acs Catal 1:385–389

    Article  CAS  Google Scholar 

  82. Peuckert M, Bonzel HP (1984) Characterization of oxidized platinum surfaces by X-ray photoelectron-spectroscopy. Surf Sci 145:239–259

    Article  CAS  Google Scholar 

  83. Eberhardt W, Fayet P, Cox DM, Fu Z, Kaldor A, Sherwood R, Sondericker D (1990) Photoemission from mass-selected monodispersed Pt clusters. Phys Rev Lett 64:780–784

    Article  CAS  Google Scholar 

  84. Fu Q, Wagner T (2007) Interaction of nanostructured metal overlayers with oxide surfaces. Surf Sci Rep 62:431–498

    Article  CAS  Google Scholar 

  85. Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551

    Article  CAS  Google Scholar 

  86. Lira E, Hansen JO, Huo P, Bechstein R, Galliker P, Laegsgaard E, Hammer B, Wendt S, Besenbacher F (2010) Dissociative and molecular oxygen chemisorption channels on reduced rutile TiO2(110): an STM and TPD study. Surf Sci 604:1945–1960

    Article  CAS  Google Scholar 

  87. Bashir S, Wahab AK, Idriss H (2015) Synergism and photocatalytic water splitting to hydrogen over M/TiO2 catalysts: effect of initial particle size of TiO2. Catal Today 240:242–247

    Article  CAS  Google Scholar 

  88. Held G, Jones LB, Seddon EA, King DA (2005) Effect of oxygen adsorption on the chiral Pt{531} surface. J Phys Chem B 109:6159–6163

    Article  CAS  Google Scholar 

  89. Li WX, Osterlund L, Vestergaard EK, Vang RT, Matthiesen J, Pedersen TM, Laegsgaard E, Hammer B, Besenbacher F (2004) Oxidation of Pt(110). Phys Rev Lett 93:146104

    Article  CAS  Google Scholar 

  90. Campbell CT (2006) Transition metal oxides: extra thermodynamic stability as thin films. Phys Rev Lett 96:066106

    Article  Google Scholar 

  91. Massalski TB (1992) Binary alloy phase diagrams, vol 1. ASM International, Materials Park

    Google Scholar 

  92. Vitos L, Ruban AV, Skriver HL, Kollar J (1998) The surface energy of metals. Surf Sci 411:186–202

    Article  CAS  Google Scholar 

  93. Rodriguez JA (1994) Interactions in bimetallic bonding: electronic and chemical properties of PdZn surfaces. J Phys Chem 98:5758–5764

    Article  CAS  Google Scholar 

  94. Rodriguez JA, Kuhn M (1995) Chemical and electronic properties of Pt in bimetallic surfaces: photoemission and CO chemisorption studies for Zn/Pt(111). J Chem Phys 102:4279

    Article  CAS  Google Scholar 

  95. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: SC, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898

    Article  CAS  Google Scholar 

  96. Kuo F-L, Li Y, Solomon M, Du J, Shepherd ND (2012) Workfunction tuning of zinc oxide films by argon sputtering and oxygen plasma: an experimental and computational study. J Phys D 45:065301

    Article  Google Scholar 

  97. Moormann H, Kohl D, Heiland G (1979) Work function and band bending on clean cleaved zinc oxide surfaces. Surf Sci 80:261–264

    Article  CAS  Google Scholar 

  98. Diebold U, Tao HS, Shinn ND, Madey TE (1994) Electronic-structure of ultrathin Fe films on TiO2(110) studied with soft-X-ray photoelectron-spectroscopy and resonant photoemission. Phys Rev B 50:14474–14480

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Christian Chauvet (TEMPO beamline, SOLEIL) for his very efficient technical support. The NAP-XPS experiment, managed by the LCPMR team (Université Pierre et Marie Curie), was funded by the Ile-de-France Region (Photoémission Environnementale en Ile-de-France, SESAME No 090003524), by the Agence Nationale de la Recherche (Surfaces under Ambient Pressure with Electron Spectroscopies, ANR- 08-BLAN-0096), and by the Université Pierre et Marie Curie. Synchrotron SOLEIL supported the integration of the setup to TEMPO beamline. LABEX MiChem (UPMC) also partially funded the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Naitabdi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naitabdi, A., Fagiewicz, R., Boucly, A. et al. Oxidation of Small Supported Platinum-based Nanoparticles Under Near-Ambient Pressure Exposure to Oxygen. Top Catal 59, 550–563 (2016). https://doi.org/10.1007/s11244-015-0529-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0529-z

Keywords

Navigation