Skip to main content
Log in

Role of Calcination Temperature on the Hydrotalcite Derived MgO–Al2O3 in Converting Ethanol to Butanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the base catalyzed ethanol condensation reactions, the calcined MgO–Al2O3 derived hydrotalcites used broadly as catalytic material and the calcination temperature plays a big role in determining the catalytic activity. The characteristics of the hydrotalcite material treated between catalytically relevant temperatures 450 and 800 °C have been studied with respect to the physical, chemical, and structural properties and compared with catalytic activity testing. With the increasing calcination temperature, the total measured catalytic basicity dropped linearly with the calcination temperature and the total measured acidity stayed the same for all the calcination temperatures except 800 °C. However, the catalyst activity testing does not show any direct correlation between the measured catalytic basicity and the catalyst activity to the ethanol condensation reaction to form 1-butanol. The highest ethanol conversion of 44 % with 1-butanol selectivity of 50 % was achieved for the 600 °C calcined hydrotalcite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Baoxin Zhang, Dilver Peña Fuentes & Armin Börner

References

  1. Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090. doi:10.1021/cs4011343

    Article  CAS  Google Scholar 

  2. Tews IJ, Jones SB, Santosa DM, Dai Z, Ramasamy K, Zhu Y (2010) A survey of opportunities for microbial conversion of biomass to hydrocarbon compatible fuels. vol PNNL-19704. PNNL, Richland

  3. Ramasamy KK, Wang Y (2014) Ethanol conversion to hydrocarbons on HZSM-5: effect of reaction conditions and Si/Al ratio on the product distributions. Catal Today 237:89–99. doi:10.1016/j.cattod.2014.02.044

    Article  CAS  Google Scholar 

  4. Ramasamy KK, Zhang H, Sun JM, Wang Y (2014) Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catal Today 238:103–110. doi:10.1016/j.cattod.2014.01.037

    Article  CAS  Google Scholar 

  5. Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrog Energy 32(15):3238–3247. doi:10.1016/j.ijhydene.2007.04.038

    Article  CAS  Google Scholar 

  6. Angelici C, Weckhuysen BM, Bruijnincx PC (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. Chem Sus Chem 6(9):1595–1614. doi:10.1002/cssc.201300214

    Article  CAS  Google Scholar 

  7. Ramasamy KK, Wang Y (2013) Thermochemical conversion fermentation-derived oxygenates to fuels. In: Zhang B, Wang Y (eds) Biomass processing, conversion and biorefinery. Nova Science Publishers Inc, New York, pp 289–300

    Google Scholar 

  8. Zheng J, Tashiro Y, Wang Q, Sonomoto K (2015) Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology. J Biosci Bioeng 119(1):1–9. doi:10.1016/j.jbiosc.2014.05.023

    Article  CAS  Google Scholar 

  9. Ndou AS, Plint N, Coville NJ (2003) Dimerisation of ethanol to butanol over solid-base catalysts. Appl Catal A 251(2):337–345. doi:10.1016/s0926-860x(03)00363-6

    Article  CAS  Google Scholar 

  10. Kozlowski JT, Davis RJ (2013) Heterogeneous catalysts for the Guerbet coupling of alcohols. ACS Catal 3(7):1588–1600. doi:10.1021/cs400292f

    Article  CAS  Google Scholar 

  11. Carvalho DL, Borges LEP, Appel LG, Ramírez de la Piscina P, Homs N (2013) In situ infrared spectroscopic study of the reaction pathway of the direct synthesis of n-butanol from ethanol over MgAl mixed-oxide catalysts. Catal Today 213:115–121. doi:10.1016/j.cattod.2013.03.034

    Article  CAS  Google Scholar 

  12. Debecker DP, Gaigneaux EM, Busca G (2009) Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry 15(16):3920–3935. doi:10.1002/chem.200900060

    Article  CAS  Google Scholar 

  13. Roelofs JCAA, Bokhoven JAV, Dillen AJV, John WG, Jong KPD (2002) The thermal decomposition of Mg ± Al hydrotalcites: effects of interlayer anions and characteristics of the final structure. Chem Eur J 8(24):5571–5579

    Article  CAS  Google Scholar 

  14. Xie W, Peng H, Chen L (2006) Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. J Mol Catal A: Chem 246(1–2):24–32. doi:10.1016/j.molcata.2005.10.008

    Article  CAS  Google Scholar 

  15. Chimentao R, Abello S, Medina F, Llorca J, Sueiras J, Cesteros Y, Salagre P (2007) Defect-induced strategies for the creation of highly active hydrotalcites in base-catalyzed reactions. J Catal 252(2):249–257. doi:10.1016/j.jcat.2007.09.015

    Article  CAS  Google Scholar 

  16. Liu Y, Lotero E, Goodwin JG, Mo X (2007) Transesterification of poultry fat with methanol using Mg–Al hydrotalcite derived catalysts. Appl Catal A 331:138–148. doi:10.1016/j.apcata.2007.07.038

    Article  CAS  Google Scholar 

  17. Shen JY, Tu M, Hu C (1998) Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures. J Solid State Chem 137(2):295–301. doi:10.1006/jssc.1997.7739

    Article  CAS  Google Scholar 

  18. Rey F, Fornes V, Rojo JM (1992) Thermal-decomposition of hydrotalcites—an infrared and nuclear-magnetic-resonance spectroscopic study. J Chem Soc Faraday Trans 88(15):2233–2238. doi:10.1039/Ft9928802233

    Article  CAS  Google Scholar 

  19. Cosimo JID, D´ıez VK, Xu M, Iglesia E, Apesteguia CR (1998) Structure and surface and catalytic properties of Mg-Al basic oxides. J Catal 178:499–510

    Article  Google Scholar 

  20. Kuśtrowski P, Chmielarz L, Bożek E, Sawalha M, Roessner F (2004) Acidity and basicity of hydrotalcite derived mixed Mg–Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2. Mater Res Bull 39(2):263–281. doi:10.1016/j.materresbull.2003.09.032

    Article  Google Scholar 

  21. Hibino T, Tsunashima A (1997) Formation of spinel from a hydrotalcite-like compound at low temperature: reaction between edges of crystallites. Clays Clay Miner 45(6):842–853. doi:10.1346/Ccmn.1997.0450608

    Article  CAS  Google Scholar 

  22. Akitt JW (1989) Multinuclear studies of aluminum compounds. Prog Nucl Magn Reson Spectrosc 21:1–149. doi:10.1016/0079-6565(89)80001-9

    Article  Google Scholar 

  23. MacKenzie KJD, Meinhold RH, Sherriff BL, Xu Z (1993) 27Al and 25 Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence. J Mater Chem 3(12):1263–1269

    Article  CAS  Google Scholar 

  24. Park T-J, Choi S-S, Kim Y (2009) 27Al solid-state NMR structural studies of hydrotalcite compounds calcined at different temperatures. Bull Korean Chem Soc 30(1):149–152

    Article  CAS  Google Scholar 

  25. Corma A, Fornes V, Rey F (1994) Hydrotalcites as base catalysts—influence of the chemical-composition and synthesis conditions on the dehydrogenation of isopropanol. J Catal 148(1):205–212. doi:10.1006/jcat.1994.1202

    Article  CAS  Google Scholar 

  26. Díez V (2003) Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions. J Catal 215(2):220–233. doi:10.1016/s0021-9517(03)00010-1

    Article  Google Scholar 

  27. Erickson KL, Bostrom TE, Frost RL (2005) A study of structural memory effects in synthetic hydrotalcites using environmental SEM. Mater Lett 59(2–3):226–229. doi:10.1016/j.matlet.2004.08.035

    Article  CAS  Google Scholar 

  28. Ramasamy KK, Gerber MA, Flake M, Zhang H, Wang Y (2014) Conversion of biomass-derived small oxygenates over HZSM-5 and its deactivation mechanism. Green Chem 16(2):748–760. doi:10.1039/C3gc41369a

    Article  CAS  Google Scholar 

  29. Rao KK, Gravelle M, Valente JS, Fc Figueras (1998) Activation of Mg–Al hydrotalcite catalysts for aldol condensation reactions. J Catal 173:115–121

    Article  CAS  Google Scholar 

  30. Constantino VRL, Pinnavaia TJ (1994) Structure-reactivity relationships for basic catalysts derived from a Mg2+/A13+/CO layered double hydroxide. Catal Lett 23:361–367

    Article  CAS  Google Scholar 

  31. Kozlowski JT, Davis RJ (2013) Sodium modification of zirconia catalysts for ethanol coupling to 1-butanol. J Energy Chem 22(1):58–64. doi:10.1016/s2095-4956(13)60007-8

    Article  CAS  Google Scholar 

  32. Birky TW, Kozlowski JT, Davis RJ (2013) Isotopic transient analysis of the ethanol coupling reaction over magnesia. J Catal 298:130–137. doi:10.1016/j.jcat.2012.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. This work was supported by the U.S. Department of Energy’s Bioenergy Technology Office. The SEM imaging portion of the work was done as a part of chemical imaging initiative, a laboratory directed research and development program at Pacific Northwest National Laboratory. The SEM imaging was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at PNNL. The authors wish to express thanks to Robert A. Dagle and Michael A. Lilga for the valuable technical discussions, Colin D. Smith for the XRD analysis, and Satish Nune for the TG analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karthikeyan K. Ramasamy or Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, K.K., Gray, M., Job, H. et al. Role of Calcination Temperature on the Hydrotalcite Derived MgO–Al2O3 in Converting Ethanol to Butanol. Top Catal 59, 46–54 (2016). https://doi.org/10.1007/s11244-015-0504-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0504-8

Keywords

Navigation