Skip to main content
Log in

Promotion of Pt Nanoparticles by Lattice Oxygen in SmFeO3 Perovskite Group for Carbon Monoxide and Ethylene Oxidation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The novel Sm1−xCexFeO3−δ (x = 0, 0.01, 0.05) (SCF) perovskites with and without 1 wt% of Pt nanoparticles (NPs) were investigated for carbon monoxide and ethylene oxidation in the temperature range of 25–350 °C. All perovskites were predominantly ionic conductors, with ionic conductivities two orders of magnitude higher than the electronic contribution. Furthermore, the cerium doping increases the ionic conductivity of these materials at high temperatures. The bare SCF perovskites possessed catalytic activity for both reactions; however the Pt-supported catalysts had 50–100 °C lower light-off temperatures than the corresponding perovskites. More significantly, the enhancement in the catalytic activity of the Pt/SCF family with respect to other Pt-supported catalysts was shown by the lower activation energies, which were 25.7 kJ/mol over Pt/Sm0.95Ce0.05FeO3−δ and 18.3 kJ/mol over Pt/Sm0.99Ce0.01FeO3−δ for CO and ethylene oxidation, respectively. The corresponding activation energies for Pt NPs supported on conventional γ-Al2O3 were 57.1 and 32 kJ/mol, and on ionically conductive yttria-stabilized zirconia (YSZ) were 35.8 and 22 kJ/mol for CO and C2H4 oxidation, respectively. The increased activity was attributed to the high ionic conductivity (O2−) of the perovskite supports at 100–400 °C that facilitates the spontaneous backspillover of O2− promoters from the lattice to the gas-exposed Pt nanoparticle surface. The promoters alter the adsorption strength of reactants similar to the electrochemical promotion mechanism observed under polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde JL, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Chem Rev 113:8192–8260

    Article  CAS  Google Scholar 

  2. Tanaka H, Misono M (2001) Curr Opin Solid State Mater Sci 5:381–387

    Article  CAS  Google Scholar 

  3. Cimino S, Lisi L, Rossi S, Faticanti M, Porta P (2003) Appl Catal B 43:397–406

    Article  CAS  Google Scholar 

  4. Federica M, Arstad B, Egil B (2010) J Catal 275:25–33

    Article  Google Scholar 

  5. Kaddouri A, Gelin P, Dupont N (2009) Catal Commun 10:1085–1089

    Article  CAS  Google Scholar 

  6. Parravano G (1952) J Chem Phys 20:342–343

    Article  CAS  Google Scholar 

  7. Meadowcroft DB (1970) Nature 226:847–848

    Article  CAS  Google Scholar 

  8. Hueso JL, Caballero A, Ocana M, Gonzalez-Elipe AR (2008) J Catal 257:334–344

    Article  CAS  Google Scholar 

  9. Carbonio RE, Fierro C, Tryk D, Scherson D, Yeager E (1988) J Power Sources 22:387–398

    Article  CAS  Google Scholar 

  10. Pena MA, Fierro JL (2001) Chem Rev 101:1981–2017

    Article  CAS  Google Scholar 

  11. Nakamura T, Misono M, Yoneda Y (1981) Chem Lett 10:1589–1592

    Article  Google Scholar 

  12. Alifanti M, Kirchnerova J, Delmon B, Klvana D (2004) Appl Catal 262:167–176

    Article  CAS  Google Scholar 

  13. Musialik-Piotrowska A, Landmesser H (2008) Catal Today 137:357–361

    Article  CAS  Google Scholar 

  14. Vaz T, Salker V (2007) Mater Sci Eng B 143:81–84

    Article  CAS  Google Scholar 

  15. Yamazoe N, Teraoka Y (1990) Catal Today 8:175–199

    Article  CAS  Google Scholar 

  16. Patel F, Patel S (2013) Proc Eng 51:324–329

    Article  CAS  Google Scholar 

  17. Zhang-Steenwinkel Y, Beckers J, Bliek A (2002) Appl Catal A 235:79–92

    Article  CAS  Google Scholar 

  18. Voorhoeve RJH, Remeika JP, Freeland PE, Matthais BT (1972) Science 177:353–354

    Article  CAS  Google Scholar 

  19. YuYao YF (1975) J Catal 36:266–275

    Article  Google Scholar 

  20. Nitadori T, Kurihara S, Misono M (1986) J Catal 98:221–228

    Article  CAS  Google Scholar 

  21. Enterkin JA, Setthapun W, Elam W, Christensen ST, Rabu FA, Marks LD, Stair PC, Poeppelmeier KR, Marshall CL (2011) ACS Catal 1:629–635

    Article  CAS  Google Scholar 

  22. Wu Y, Luo L (2011) Russ J Phys Chem A 85:2429–2432

    Article  CAS  Google Scholar 

  23. Enterkin JA, Poeppelmeier KR, Mark LD (2011) Nano Lett 11:993–997

    Article  CAS  Google Scholar 

  24. Vrieland E (1974) J Catal 32:415–428

    Article  CAS  Google Scholar 

  25. Marnellos G, Athanasiou C, Angelidis T, Stoukides M (1997) Ionics 3:96–103

    Article  CAS  Google Scholar 

  26. Dole H, Isaifan RJ, Sapountzi FM, Lizarraga L, Aubert D, Princivalle A, Vernoux P, Baranova EA (2013) Catal Lett 143:996–1002

    Article  CAS  Google Scholar 

  27. Pereñíguez R, Hueso JL, Gaillard F, Holgado JP, Caballero A (2012) Catal Lett 142:408–416

    Article  Google Scholar 

  28. Pereñíguez R, Hueso JL, Holgado JP, Gaillard F, Caballero A (2009) Catal Lett 131:164–169

    Article  Google Scholar 

  29. Rida K, Benabbas A, Bouremmad F, Peña MA, Martínez-Arias A (2006) Catal Commun 7:963–968

    Article  CAS  Google Scholar 

  30. Bukhari SM, Giorgi JB (2009) Solid State Ionics 180:198–204

    Article  CAS  Google Scholar 

  31. Baranova EA, Bock C, Ilin D, Wang D, Macdougall B (2006) Surf Sci 600:3502–3511

    Article  CAS  Google Scholar 

  32. Isaifan RJ, Dole H, Obeid E, Lizarraga L, Vernoux P, Baranova EA (2012) Electrochem Solid-State Lett 15:E14–E17

    Article  CAS  Google Scholar 

  33. Penwell W, Giorgi J (2014) Sens Actuators B 191:171–177

    Article  CAS  Google Scholar 

  34. Vayenas CG, Bebelis S, Yentekakis I, Lintz H (1992) Catal Today 11:303–438

    Article  CAS  Google Scholar 

  35. Fortunato MA, Aubert D, Capdeillayre C, Daniel C, Hadjar A, Princivalle A, Guizard C, Vernoux P (2011) Appl Catal A 403:18–24

    Article  CAS  Google Scholar 

  36. Rioux RM, Hoefelmeyer JD, Grass M, Song H, Niesz K, Yang P, Gabor GA (2008) Langmuir 24:198–207

    Article  CAS  Google Scholar 

  37. Marwood M, Vayenas CG (1998) J Catal 178:429–440

    Article  CAS  Google Scholar 

  38. Fogler HS (2006) Elements of chemical reaction engineering, 4th edn. Pearsons Education Inc., New Jersy

    Google Scholar 

  39. Oyama ST, Zhang X, Lu J, Gu Y, Fujitani T (2008) J Catal 257:1–4

    Article  CAS  Google Scholar 

  40. Weisz PB, Hicks JS (1962) Chem Eng Sci 17:265–275

    Article  CAS  Google Scholar 

  41. Mears DE (1971) Ind Eng Chem Process Des Dev 10:541–547

    Article  CAS  Google Scholar 

  42. Chahbani MH, Labidi J, Paris J (2002) Appl Therm Eng 22:23–40

    Article  CAS  Google Scholar 

  43. Suib S (2013) New and future development in catalysis (Chap. 17). Elsevier, Amsterdam, p 489

    Google Scholar 

  44. Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mater Res Bull 23:51–58

    Article  CAS  Google Scholar 

  45. Falcon H, Alonso JA (2000) Solid State Ionics 131:237–248

    Article  CAS  Google Scholar 

  46. Levasseur B, Kaliaguine S (2009) Appl Catal B 88:305–314

    Article  CAS  Google Scholar 

  47. Nitadori T, Misono M (1985) J Catal 93:459–466

    Article  CAS  Google Scholar 

  48. Forni L, Oliva C, Vatti FP, Kandala MA, Ezerets AM, Vishniakov AV (1996) Appl Catal B 7:269–284

    Article  CAS  Google Scholar 

  49. Alifanti M, Auer R, Kirchnerova J, Thyrion F, Grange P, Delmon B (2003) Appl Catal B 41:71–81

    Article  CAS  Google Scholar 

  50. Bialobok B, Trawczynski J, Mista W, Zawadzki M (2007) Appl Catal B 72:395–403

    Article  CAS  Google Scholar 

  51. Nakamura T, Misono M, Yoneda Y (1983) J Catal 83:151–159

    Article  CAS  Google Scholar 

  52. Tabata K, Matsumoto I, Kohiki S, Misono M (1987) J Mater Sci 22:4031–4035

    Article  CAS  Google Scholar 

  53. Isaifan RJ, Baranova EA (2014) Catal Today 241:107–113

    Article  Google Scholar 

  54. Van Strien A, Nieuwenhuys BE (1979) Surf Sci 80:226–237

    Article  Google Scholar 

  55. Isaifan RJ, Ntais S, Baranova EA (2013) Appl Catal A 464–465:87–94

    Article  Google Scholar 

  56. Vernoux P, Guth M, Li X (2009) Electrochem Solid State Lett 12:E9–E11

    Article  CAS  Google Scholar 

  57. Isaifan RJ, Baranova EA (2013) Electrochem Commun 27:164–167

    Article  CAS  Google Scholar 

  58. Isaifan RJ, Ntais S, Couillard M, Baranova EA (2015) J Catal 324:32–40

    Article  CAS  Google Scholar 

  59. Alves Fortunato M, Princivalle A, Capdeillayre C, Petigny N, Tardivat C, Guizard C, Tsampas MN, Sapountzi FM, Vernoux P (2015) Top Catal. doi:10.1007/s11244-014-0293-5

    Google Scholar 

  60. Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2001) Electrochemical activation of catalysis: promotion: electrochemical promotion and metal-support interaction. Plenum Publishers, New York

    Google Scholar 

  61. Stoukides M, Vayenas CG (1981) J Catal 70(70):137–146

    Article  CAS  Google Scholar 

  62. Vayenas CG, Bebelis S, Neophytides S (1988) J Phys Chem 92:5083–5085

    Article  CAS  Google Scholar 

  63. Vayenas CG, Bebelis S, Ladas S (1990) Nature 343:625–627

    Article  CAS  Google Scholar 

  64. Seiyama T, Yamazoe N, Eguchi K (1985) Ind Eng Chem Prod Res Dev 24:19–27

    Article  CAS  Google Scholar 

  65. Frost JC (1988) Nature 334:577–580

    Article  CAS  Google Scholar 

  66. Campell CT (2012) Nature Chem 4:597–598

    Article  Google Scholar 

  67. Acerbi N, Edman Tsang SC, Jones G, Golunski S, Collier P (2013) Angew Chem Int Ed 52:7737–7741

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Science and Engineering Research Council (NSERC) is acknowledged. R.J. Isaifan acknowledges Ontario Graduate Scholarship (OGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Baranova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaifan, R.J., Penwell, W.D., Filizzola, J.O.C. et al. Promotion of Pt Nanoparticles by Lattice Oxygen in SmFeO3 Perovskite Group for Carbon Monoxide and Ethylene Oxidation. Top Catal 58, 1218–1227 (2015). https://doi.org/10.1007/s11244-015-0494-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0494-6

Keywords

Navigation