Skip to main content
Log in

On the Effect of Cu on the Activity of Carbon Supported Ni Nanoparticles for Hydrogen Electrode Reactions in Alkaline Medium

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Effects of adding varied amounts of copper to carbon-supported nickel particles on their structure, composition and electrocatalytic activity for the hydrogen oxidation and evolution reactions in alkaline medium have been explored. Ni1-x Cu x /C catalysts were prepared by the incipient wetness impregnation. Comprehensive characterization of the catalysts included X-ray powder diffraction, X-ray photoelectron spectroscopic, transmission electron microscopic and cyclic voltammetric analyses, while atomistic Monte Carlo simulations have been undertaken to obtain further insights into the structure of the bimetallic NiCu nanoparticles. We found that compared to monometallic Ni, NiCu nanoparticles show lower propensity towards oxidation under ambient conditions. Furthermore, we report that adding Cu allows increasing the surface-weighted electrocatalytic activity, and the specific surface area of Ni1-x Cu x /C electrodes, both contributing to a ca four-fold enhancement of the mass-weighted activity. The nature of the synergistic interactions between Ni and Cu is proposed on the basis of the analysis of experimental data and Monte Carlo structural modelling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Y-J, Qiao J, Baker R, Zhang J (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42:5768–5787

    Article  CAS  Google Scholar 

  2. Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191

    Article  CAS  Google Scholar 

  3. Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7:2255–2260

    Article  CAS  Google Scholar 

  4. Sheng W, Myint M, Chen JG, Yan Y (2013) Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci 6:1509–1512

    Article  CAS  Google Scholar 

  5. Marini S, Salvi P, Nelli P, Pesenti R, Villa M, Kiros Y (2013) Stable and inexpensive electrodes for the hydrogen evolution reaction. Int J Hydrog Energy 38:11484–11495

    Article  CAS  Google Scholar 

  6. Solmaz R, Döner A, Kardaş G (2008) Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction. Electrochem Commun 10:1909–1911

    Article  CAS  Google Scholar 

  7. Ngamlerdpokin K, Tantavichet N (2014) Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media. Int J Hydrog Energy 39:2505–2515

    Article  CAS  Google Scholar 

  8. Ahn SH, Park HH-Y, Choi I, Yoo SJ, Hwang SJ, Kim H-J, Cho EA, Yoon CW, Son H, Hernandez JM, Nam SW, Lim T-H, Kim S-K, Jang JH (2013) Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis. Int J Hydrog Energy 38:13493–13501

    Article  CAS  Google Scholar 

  9. Sheng W, Bivens AP, Myint M, Zhuang Z, Forest RV, Fang Q, Chen JG, Yan Y (2014) Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ Sci 7:1719–1724

    Article  CAS  Google Scholar 

  10. Kiros Y, Majari M, Nissinen TA (2003) Effect and characterization of dopants to Raney nickel for hydrogen oxidation. J Alloy Compd 360:279–285

    Article  CAS  Google Scholar 

  11. Conway BE, Bockris JO (1957) Electrolytic Hydrogen Evolution Kinetics and Its Relation to the Electronic and Adsorptive Properties of the Metal. J Chem Phys 26:532–541

    Article  CAS  Google Scholar 

  12. Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals iii. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem 39:163–184

    Article  CAS  Google Scholar 

  13. Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063

    Article  CAS  Google Scholar 

  14. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    Article  CAS  Google Scholar 

  15. Petrii OA, Tsirlina GA (1994) Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science. Electrochim Acta 39:1739–1747

    Article  CAS  Google Scholar 

  16. Quaino P, Juarez F, Santos E, Schmickler W (2014) Volcano plots in hydrogen electrocatalysis—uses and abuses. Beilstein J Nanotechnol 5:846–854

    Article  CAS  Google Scholar 

  17. Santos E, Hindelang P, Quaino P, Schulz EN, Soldano G, Schmickler W (2011) Hydrogen electrocatalysis on single crystals and on nanostructured electrodes. ChemPhysChem 12:2274–2279

    Article  CAS  Google Scholar 

  18. Santos E, Quaino P, Hindelang PF, Schmickler W (2010) Hydrogen evolution on a pseudomorphic Cu-layer on Ni(111)—A theoretical study. J Electroanal Chem 649:149–152

    Article  CAS  Google Scholar 

  19. Watanabe K, Hashiba M, Yamashina T (1976) A quantitative analysis of surface segregation and in-depth profile of copper-nickel alloys. Surf Sci 61:483–490

    Article  CAS  Google Scholar 

  20. Ling DT, Miller JN, Lindau I, Spicer WE, Stefan PM (1978) Oscillations in the compositional depth profile of Cu/Ni alloys: a study by UPS. Surf Sci 74:612–620

    Article  CAS  Google Scholar 

  21. Brongersma HH, Buck TM (1975) Selected topics in low-energy ion scattering: surface segregation in Cu/Ni alloys and ion neutralization. Surf Sci 53:649–658

    Article  CAS  Google Scholar 

  22. Tsong TT, Ng YS, McLane SB (1980) Surface segregation of Ni-Cu alloy in nitrogen and oxygen: an atom-probe field-ion microscope study. J Appl Phys 51:6189–6191

    Article  CAS  Google Scholar 

  23. Sakurai T, Hashizume T, Kobayashi A, Sakai A, Hyodo S, Kuk Y, Pickering HW (1986) Surface segregation of Ni-Cu binary alloys studied by an atom-probe. Phys Rev B 34:8379–8390

    Article  CAS  Google Scholar 

  24. Donnelly RG, King TS (1978) Surface composition and surface cluster size distribution of Cu-Ni alloys via a monte carlo method. Surf Sci 74:89–108

    Article  CAS  Google Scholar 

  25. Foiles SM (1985) Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Phys Rev B 32:7685–7693

    Article  CAS  Google Scholar 

  26. Yan XL, Wang JY (2013) Size effects on surface segregation in Ni–Cu alloy thin films. Thin Solid Films 529:483–487

    Article  CAS  Google Scholar 

  27. Xie Y-P, Zhao S-J (2011) The energetic and structural properties of bcc NiCu, FeCu alloys: a first-principles study. Comput Mater Sci 50:2586–2591

    Article  CAS  Google Scholar 

  28. Wang HY, Najafabadi R, Srolovitz DJ, LeSar R (1992) (100) surface segregation in Cu-Ni alloys. Phys Rev B 45:12028–12042

    Article  CAS  Google Scholar 

  29. Huang S, Balbuena PB (2002) Melting of bimetallic Cu–Ni nanoclusters. J Phys Chem B 106:7225–7236

    Article  CAS  Google Scholar 

  30. Mainardi DS, Balbuena PB (2001) Monte Carlo simulation of Cu–Ni nanoclusters: surface segregation studies. Langmuir 17:2047–2050

    Article  CAS  Google Scholar 

  31. Oshchepkov AG, Simonov AN, Simonov PA, Shmakov AN, Rudina NA, Ishchenko AV, Cherstiouk OV, Parmon VN (2014) Interrelation between catalytic activity for oxygen electroreduction and structure of supported platinum. J Electroanal Chem 729:34–42

    Article  CAS  Google Scholar 

  32. Machado SAS, Avaca LA (1994) The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim Acta 39:1385–1391

    Article  CAS  Google Scholar 

  33. Sarkany J (1982) On the use of the dynamic pulse method to measure metal surface areas. J Catal 76:75–83

    Article  CAS  Google Scholar 

  34. UK Surface Analysis Forum. http://www.uksaf.org/xpspeak41.zip

  35. Hall DS, Bock C, MacDougall BR (2013) The Electrochemistry of Metallic Nickel: oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution. J Electrochem Soc 160:F235–F243

    Article  CAS  Google Scholar 

  36. Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D (2006) In situ studies of the oxidation of nickel electrodes in alkaline solution. J Electroanal Chem 587:172–181

    Article  CAS  Google Scholar 

  37. Domnick R, Held G, Witte P, Steinrück H-P (2001) The transition from oxygen chemisorption to oxidation of ultra-thin Ni layers on Cu(111). J Chem Phys 115:1902–1908

    Article  CAS  Google Scholar 

  38. Holloway PH (1981) Chemisorption and oxide formation on metals: oxygen–nickel reaction. J Vac Sci Technol 18:653–659

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the grant ERA.Net RUS No. 208 and Russian Academy of Science (Project No. V.46.4.4). Clarifying discussions with Prof Wolfgang Schmickler and Prof. Elizabeth Santos (Ulm University, Germany) are highly appreciated. A.G.O. acknowledges financial support from Russian UMNIK Program No. 10U/01-13 and PhD Eiffel scholarship of French government. T.Y.K acknowledges financial support from the Skolkovo Foundation (Grant Agreement for Russian educational organizations No. 3 of 25.12.2014). R.R.N and D.V.G. thank the Russian Foundation for Basic Research (Project No. 14-03-00935a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena R. Savinova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshchepkov, A.G., Simonov, P.A., Cherstiouk, O.V. et al. On the Effect of Cu on the Activity of Carbon Supported Ni Nanoparticles for Hydrogen Electrode Reactions in Alkaline Medium. Top Catal 58, 1181–1192 (2015). https://doi.org/10.1007/s11244-015-0487-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0487-5

Keywords

Navigation