Skip to main content
Log in

Characterization of the [FeFe]-Hydrogenase Maturation Protein HydF by EPR Techniques: Insights into the Catalytic Mechanism

  • Orginal Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic site of [FeFe]-hydrogenase, the “H-cluster”, composed by a [4Fe–4S] unit connected by a cysteinyl residue to a [2Fe] center coordinated by three CO, two CN and a bridging dithiolate, is assembled in a complex maturation pathway, at present not fully characterized, involving three conserved proteins, HydG, HydE and HydF. In this contribution we review our studies on HydF, a protein which acts as scaffold and carrier for the [2Fe] unit of the H-cluster. HydF is a complex enzyme which contains one [4Fe–4S] cluster binding site, with three conserved cysteine residues and a non-Cys ligand. We have exploited EPR, HYSCORE and PELDOR spectroscopies to get insight into the structure and chemical role of HydF. On the basis of the results we discuss the possibility that the non-Cys ligated Fe atom of the [4Fe–4S] cluster, is the site where the [2Fe] subcluster precursor is anchored and finally processed to be delivered to the hydrogenase (HydA). Our PELDOR experiments on the isolated GTPase domain of HydF, have also suggested that interactions with HydG and HydE proteins may be regulated by the binding of the nucleotide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  Google Scholar 

  2. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  CAS  Google Scholar 

  3. Rubach JK, Brazzolotto X, Gaillard J, Fontecave M (2005) Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Lett 579:5055–5060

    Article  CAS  Google Scholar 

  4. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106

    Article  CAS  Google Scholar 

  5. Shepard EM, Mus F, Betz JN, Byer AS, Duffus BR, Peters JW, Broderick JB (2014) [FeFe]-hydrogenase maturation. Biochemistry 53:4090–4104

    Article  CAS  Google Scholar 

  6. Peters JW, Broderick JB (2012) Emerging paradigms for complex iron-sulfur cofactor assembly and insertion. Annu Rev Biochem 81:429–450

    Article  CAS  Google Scholar 

  7. McGlynn SE, Shepard EM, Winslow MA, Naumov AV, Duschene KS, Posewitz MC, Broderick WE, Broderick JB, Peters JW (2008) HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis. FEBS Lett 582:2183–2187

    Article  CAS  Google Scholar 

  8. Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465:248–251

    Article  CAS  Google Scholar 

  9. Czech I, Stripp S, Sanganas O, Leidel N, Happe T, Haumann M (2011) The [FeFe]-hydrogenase maturation protein HydF contains a H-cluster like [4Fe4S]–2Fe site. FEBS Lett 585:225–230

    Article  CAS  Google Scholar 

  10. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–69

    Article  CAS  Google Scholar 

  11. Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Noth J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T (2013) Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat Chem Biol 9:607–609

    Article  CAS  Google Scholar 

  12. Kuchenreuther JM, Myers WK, Suess DLM, Stich TA, Pelmenschikov V, Shiigi SA, Cramer SP, Swartz JR, Britt RD, George SJ (2014) The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science 343:424–427

    Article  CAS  Google Scholar 

  13. King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172

    Article  CAS  Google Scholar 

  14. Brazzolotto X, Rubach JK, Gaillard J, Gambarelli S, Atta M, Fontecave M (2006) The [Fe-Fe]-hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an iron-sulfur cluster. J Biol Chem 281:769–774

    Article  CAS  Google Scholar 

  15. Kuchenreuther JM, Britt RD, Swartz JR (2012) New insights into [FeFe] hydrogenase activation and maturase function. PLoS One 7:e45850. doi:10.1371/journal.pone.0045850

    Article  CAS  Google Scholar 

  16. Shepard EM, McGlynn SE, Bueling AL, Grady-Smith CS, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB (2010) Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proc Natl Acad Sci USA 107:10448–10453

    Article  CAS  Google Scholar 

  17. Berto P, Di Valentin M, Cendron L, Vallese F, Albertini M, Salvadori E, Giacometti M, Carbonera D, Costantini P (2012) The [4Fe–4S]-cluster coordination of [FeFe]-hydrogenase maturation protein HydF as revealed by EPR and HYSCORE spectroscopies. Biochim Biophys Acta 1817:2149–2157

    Article  CAS  Google Scholar 

  18. Albertini M, Vallese F, Di Valentin M, Berto P, Giacometti GM, Costantini P, Carbonera D (2014) The proton iron-sulfur cluster environment of the [FeFe]-hydrogenase maturation protein HydF from Thermotoga neapolitana. Int J Hydrog Energy 39:18574–18582

    Article  CAS  Google Scholar 

  19. Berggren G, Garcia-Serres R, Brazzolotto X, Clemancey M, Gambarelli S, Atta M, Latour JM, Hernandez HL, Subramanian S, Johnson MK, Fontecave M (2014) An EPR/HYSCORE, Mössbauer, and resonance Raman study of the hydrogenase maturation enzyme HydF: a model for N-coordination to [4Fe–4S] clusters. J Biol Inorg Chem 19:75–84

    Article  CAS  Google Scholar 

  20. Cendron L, Berto P, D’Adamo S, Vallese F, Govoni C, Posewitz MC, Giacometti GM, Costantini P, Zanotti G (2011) Crystal structure of HydF scaffold protein provides insights into [FeFe]-hydrogenase maturation. J Biol Chem 286:43944–43950

    Article  CAS  Google Scholar 

  21. Maso L, Galazzo L, Vallese F, Di Valentin M, Albertini M, De Rosa E, Giacometti GM, Costantini P, Carbonera D (2015) A conformational study of the GTPase domain of [FeFe]-hydrogenase maturation protein HydF by PELDOR spectroscopy. Appl Magn Res. doi:10.1007/s00723-015-0641-z

  22. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  23. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Res 30:473–498

    Article  CAS  Google Scholar 

  24. Czech I, Silakov A, Lubitz W, Happe T (2010) The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN ligated iron cofactor. FEBS Lett 584:638–642

    Article  CAS  Google Scholar 

  25. Moulis JM, Davasse V, Golinelli MP, Meyer J, Quinkal I (1996) The coordination sphere of iron-sulfur clusters: lessons from site-directed mutagenesis experiments. J Biol Inorg Chem 1:2–14

    Article  CAS  Google Scholar 

  26. Dikanov SA, Xun L, Karpiel AB, Tyryshkin AM, Bowman MK (1996) Orientationally-selected two-dimensional ESEEM spectroscopy of the Rieske-type iron–sulfur cluster in 2,4,5-trichlorophenoxyacetate monooxygenase from Burkholderia cepacia AC1100. J Am Chem Soc 118:8048–8416

    Article  Google Scholar 

  27. Foerster S, van Gastel M, Brecht M, Lubitz W (2005) An orientation-selected ENDOR and HYSCORE study of the Ni-C active state of Desulfovibrio vulgaris Miyazaki F hydrogenase. J Biol Inorg Chem 10:51–62

    Article  CAS  Google Scholar 

  28. Chatterjee R, Milikisiyants S, Coates CS, Lakshmi KV (2011) High-resolution two-dimensional 1H and 14N hyperfine sublevel correlation spectroscopy of the primary quinone of photosystem II. Biochemistry 50:491–501

    Article  CAS  Google Scholar 

  29. Jiang F, McCracken J, Peisach J (1990) Nuclear quadrupole interactions in copper(II)-diethylenetriamine-substituted imidazole complexes and in copper(II) proteins. J Am Chem Soc 112:9035–9044

    Article  CAS  Google Scholar 

  30. Hinckley GT, Frey PA (2006) Cofactor dependence of reduction potentials for [4Fe–4S]2+/1+ in lysine 2,3-aminomutase. Biochemistry 45:3219–3225

    Article  CAS  Google Scholar 

  31. Broderick JB, Duffus BR, Duschene KS, Shepard EM (2014) Radical S-adenosylmethionine enzymes. Chem Rev 114:4229–4317

    Article  CAS  Google Scholar 

  32. Holm RH, Kennepohl P, Solomon EI (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96:2239–2314

    Article  CAS  Google Scholar 

  33. Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148

    Article  CAS  Google Scholar 

  34. Vallese F, Berto P, Ruzzene M, Cendron L, Sarno S, De Rosa E, Giacometti GM, Costantini P (2012) Biochemical analysis of the interactions between the proteins involved in the [FeFe]-hydrogenase maturation process. J Biol Chem 287:36544–36555

    Article  CAS  Google Scholar 

  35. Bak DW, Elliott SJ (2014) Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr Opin Chem Biol 19:50–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the CARIPARO Foundation (M3PC Project) by the MIUR (PRIN2010-2011 Project 2010FM38P_004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola Costantini or Donatella Carbonera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albertini, M., Galazzo, L., Maso, L. et al. Characterization of the [FeFe]-Hydrogenase Maturation Protein HydF by EPR Techniques: Insights into the Catalytic Mechanism. Top Catal 58, 708–718 (2015). https://doi.org/10.1007/s11244-015-0413-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0413-x

Keywords

Navigation