Skip to main content
Log in

Effect of Ionic Radius of Rare Earth on USY Zeolite in Fluid Catalytic Cracking: Fundamentals and Commercial Application

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The ultrastable Y zeolite (USY) in fluid cracking catalyst is commonly stabilized by ion-exchange with rare earth (RE) cations. The RE-exchange provides hydrothermal stability to the zeolite by improving surface area retention, as well as inhibiting dealumination, resulting in greater preservation of acid sites. Though La and Ce are commonly used in fluid catalytic cracking (FCC) catalysts, we have observed that the stability of REUSY catalysts improves as the ionic radius of the RE cation decreases. In this paper, we compare the activity and selectivity of REUSY catalysts, stabilized with La and heavy (Ho, Er, and Yb) rare earth cations, the latter having a smaller ionic radius, due to the well-known phenomenon of lanthanide contraction. The experimental data show that a significant improvement in catalytic activity is achieved when RE elements having a smaller ionic radius are used to make the REUSY catalyst. Yttrium is even more effective than the heavier lanthanides in stabilizing Y-zeolite, leading to higher cracking activity and gasoline selectivity under a variety of deactivation conditions. These benefits of yttrium exchange does not only result from a larger resistance to dealumination, but also to an increase of the catalyst intrinsic cracking activity, which may be explained by changes in the adsorption of hydrocarbons at the active sites. Examples of commercial applications of yttrium-based FCC catalysts are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Swaty TE (2005) Hydrocarb Process 84(9):35

    Google Scholar 

  2. Silvy RP (2004) Appl Catal A 261:247

    Article  CAS  Google Scholar 

  3. Nakamura O (2006) Oil Gas J 104:56

    Google Scholar 

  4. Cheng WC, Habib ET, Rajagopalan K, Roberie TG, Wormsbecher RF, Ziebarth MS (2008) Fluid catalytic cracking in handbook of heterogeneous catalysis, 2nd edn. Wiley, pp 2741–2778

  5. Plank C, Rosinski E (1964) US Patent 3,140,253, Assigned to Socony Mobil Oil

  6. Maher PK, McDaniel CV (1966) US Patent 3,293,192, Assigned to W. R. Grace

  7. Breck DW (1974) Zeolite molecular sieves. Wiley, New York, p 92

    Google Scholar 

  8. Fichtner-Schmittler H, Lohse U, Engelhardt G, Patzelova V (1984) Cryst Res Tech 19:K1

    Article  CAS  Google Scholar 

  9. Sohn JR, DeCanio SJ, Lunsford JH, O’Donnell DJ (1986) Zeolites 6:225

    Article  CAS  Google Scholar 

  10. Nery JG, Mascarenhas YP, Bonagamba TJ, Mello NC, Sousa-Aguiar EF (1997) Zeolites 18:44

    Article  CAS  Google Scholar 

  11. Klein H, Fuess H, Hunger M (1995) J Chem Soc Faraday Trans 91:1831

    Article  Google Scholar 

  12. Schṻßler F, Pidko EA, Kolvenbach R, Sievers C, Hensen EJM, van Santen RA, Lercher J (2011) J Phys Chem C 115:21763–21776

    Article  Google Scholar 

  13. Hriljac JA, Eddy MM, Cheetham AK, Donohue JA, Ray CJ (1993) J Solid State Chem 106:66

    Article  CAS  Google Scholar 

  14. Sousa-Aguiar EF, Trigueiro FE, Totin FMZ (2013) Catal Today 218–219:115–122

    Article  Google Scholar 

  15. Nery JG, Giotto MV, Mascarenhas YP, Cardoso D, Zotin FMZ, Sousa-Aguiar EF (2000) Micro Meso Mater 41:281–293

    Article  CAS  Google Scholar 

  16. Jolly W (1984) Modern inorganic chemistry. McGraw-Hill, New York p 22

  17. Johnson MFL (1978) J Catal 52:425–431

    Article  CAS  Google Scholar 

  18. ASTM D-5757 (2003) Standard test method for determination of the unit cell dimension of a faujasite-type zeoilte, ASTM, Philadelphia

  19. Kofke TJG, Gorte RJ, Farneth WE (1988) J Catal 114:34

    Article  CAS  Google Scholar 

  20. Boock LT, Petti TF, Rudesill JA (1996) ACS Symp Ser 634:171–183

    Article  CAS  Google Scholar 

  21. Kayser JC (2000) US Patent 6,069,012

  22. Wallenstein D, Haas A, Harding RH (2000) Appl Catal 203:23–36

    Article  CAS  Google Scholar 

  23. Wallenstein D, Alkemade U (1996) Appl Catal A Gen 137:37

    Article  CAS  Google Scholar 

  24. Eder F, Lercher JA (1997) Zeolites 18:75–81

    Article  CAS  Google Scholar 

  25. Eder F, Stockenhuber M, Lercher JA (1997) J Phys Chem B 101:5414–5419

    Article  CAS  Google Scholar 

  26. Kim JG, Kompany T, Ryoo R, Ito T, Fraissard J (1994) Zeolites 14:427–432

    Article  Google Scholar 

  27. De Moor BA, Reyniers MF, Gobin OC, Lercher JA, Marin GB (2011) J Phys Chem C 115:1204–1209

    Article  Google Scholar 

  28. Bhan A, Gounder R, Macht J, Iglesis E (2008) J Catal 252:221–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuying Shu or Wu-Cheng Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Y., Travert, A., Schiller, R. et al. Effect of Ionic Radius of Rare Earth on USY Zeolite in Fluid Catalytic Cracking: Fundamentals and Commercial Application. Top Catal 58, 334–342 (2015). https://doi.org/10.1007/s11244-015-0374-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0374-0

Keywords

Navigation