Skip to main content
Log in

Effect of Ir and Pt Addition on the HDO Performance of RuS2/SBA-15 Sulfide Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ir and Pt have been tested as dopants for ruthenium sulfide supported on ordered SBA-15 mesoporous silica. The incorporation of Ir or Pt into RuS2/SBA-15 was found to enhance the activity in the gas-phase hydrodeoxygenation (HDO) of phenol carried out at 310 °C and 30 bar of total H2 pressure. X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy, temperature programmed desorption of NH3 and H2-temperature-programmed reduction of the sulfided catalysts were used to characterize the catalysts. XPS analysis of the spent catalysts confirmed the oxidation of ruthenium sulfide during HDO of phenol. The main factor that influences the catalyst activity was the surface exposure of the active phases, whereas the formation of oxysulfide species did not inhibit the HDO reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Furimsky E (2000) Catalytic hydrodeoxygenation. Appl Catal A 199:147–190. doi:10.1016/S0926-860X(99)00555-4

    Article  CAS  Google Scholar 

  2. Said M, Samimi F, Karimpourfard D, Nimmanwudipong T, Gates BC, Reza Rahimpour M (2014) Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ Sci 7:103–129. doi:10.1039/c3ee43081b

    Article  Google Scholar 

  3. He Z, Wang X (2013) Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catal Sustain Energy 1:28–52. doi:10.2478/cse-2012-0004

    Google Scholar 

  4. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi:10.1021/cr068360d

    Article  CAS  Google Scholar 

  5. Elliot DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuels 21:1792–1815. doi:10.1021/ef070044u

    Article  Google Scholar 

  6. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19. doi:10.1016/j.apcata.2011.08.046

    Article  CAS  Google Scholar 

  7. He Z, Wang X (2012) Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catal Sustain Energy 1:28–52. doi:10.2478/cse-2012-0004

    Google Scholar 

  8. Butler E, Devlin G, Meier D, McDonnell K (2011) A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew Sustain Energy Rev 15(8):4171–4186. doi:10.1016/j.rser.2011.07.035

    Article  CAS  Google Scholar 

  9. Bu Q, Lei H, Zacher AH, Wang L, Ren S, Liang J, Wei Y, Liu Y, Tang J, Zhang Q, Ruan R (2012) A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour Technol 124:470–477. doi:10.1016/j.biortech.2012.08.089

    Article  CAS  Google Scholar 

  10. Pawelec B, Fierro JLG (2014) Hydrodeoxygenation of biomass-derived liquids over sulfided transition metal catalysts. In: Rinaldi, R (ed) Catalytic hydrogenation for biomass conversion. RSC Publishing Energy and Environment Series, Chap. 8, pp 174–203

  11. Platanitis P, Panagiotou GD, Bourikas K, Kordalis C, Lycourghiotis A (2014) Hydrodeoxygenation of phenol over hydrotreatment catalysts in their reduced and sulfided states. Open Catal J 7:18–25. doi:10.2174/1876214X01407010018

    Article  Google Scholar 

  12. Senol OI, Ryymin EM, Viljava TR, Krause AOI (2007) Effect of hydrogen sulfide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulfided catalysts. J Mol Catal A 277:107–112. doi:10.1016/j.molcata.2007.07.033

    Article  CAS  Google Scholar 

  13. Elliot DC, Hart TR (2009) Catalytic hydroprocessing of chemical models for bio-oil. Energy Fuels 23:631–637. doi:10.1021/ef8007773

    Article  Google Scholar 

  14. Ruiz PE, Leiva K, Garcia R, Reyes P, Fierro JLG, Escalona N (2010) Relevance of sulfiding pretreatment on the performance of Re/ZrO2 and Re/ZrO2-sulfated catalysts for the hydrodeoxygenation of guayacol. Appl Catal A 384:78–83. doi:10.1016/j.apcata.2010.06.009

    Article  CAS  Google Scholar 

  15. Nimmanwudipong T, Runnebaum RC, Tay K, Block DE, Gates BC (2011) Cyclohexanone conversion catalyzed by Pt/γ-Al2O3: evidence of oxygen removal and coupling reactions. Catal Lett 141:1072–1078. doi:10.1007/s10562-011-0659-2

    Article  CAS  Google Scholar 

  16. Loricera CV, Pawelec B, Infantes-Molina A, Álvarez-Galván MC, Huirache-Acuña R, Nava R, Fierro JLG (2012) Hydrogenolysis of anisole over mesoporous sulfided CoMoW/SBA-15(16) catalysts. Catal Today 172:103–110. doi:10.1016/j.cattod.2011.02.037

    Article  Google Scholar 

  17. Ruiz PE, Frederick BG, De Sisto WJ, Austin RN, Radovic LR, Leiva K, Garcia R, Escalona N, Wheeler MC (2012) Guaiacol hydrodeoxygenation on MoS2 catalysts: influence of activated carbon supports. Catal Commun 27:44–48. doi:10.1016/j.catcom.2012.06.021

    Article  CAS  Google Scholar 

  18. Zhao HY, Li D, Bui P, Oyama ST (2011) Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A 391:305–310. doi:10.1016/j.apcata.2010.07.039

    Article  CAS  Google Scholar 

  19. Oyama ST, Wang X, Lee YK, Chun WJ (2004) Active phase of Ni2P/SiO2 in hydroprocessing reactions. J Catal 221:263–273. doi:10.1016/S0021-9517(03)00017-4

    Article  CAS  Google Scholar 

  20. Bowker RH (2011) Hydrodesulfurization and hydrodeoxygenation over noble metal phosphide catalysts. Western Washington University Masters Thesis Collection. Paper 177

  21. Bowker RH, Smith MC, Pease M, Slenkamp KM, Kovarik L, Bussell ME (2011) Synthesis and hydrodeoxygenation properties of ruthenium phosphide catalysts. ACS Catal 1(8):917–922. doi:10.1021/cs200238v

    Article  CAS  Google Scholar 

  22. Ghampson IT, Sepúlveda C, Garcia R, Fierro JLG, Escalona N, De Sisto WJ (2012) Comparison of alumina- and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol. Appl Catal A 435–436:51–60. doi:10.1016/j.apcata.2012.05.039

    Article  Google Scholar 

  23. Monnier J, Sulimma H, Dalai A, Caravaggio G (2010) Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Appl Catal A 382:176–180. doi:10.1016/j.apcata.2010.04.035

    Article  CAS  Google Scholar 

  24. Ghampson IT, Sepúlveda C, Garcia R, Radovic LR, Fierro JLG, De Sisto WJ, Escalona N (2012) Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: effects of nitriding methods and support properties. Appl Catal A 439–440:111–124. doi:10.1016/j.apcata.2012.06.047

    Article  Google Scholar 

  25. Sepúlveda C, Leiva K, Garcia R, Radovic LR, Ghampson IT, De Sisto WJ, Fierro JLG, Escalona N (2011) Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons. Catal Today 172:232–239. doi:10.1016/j.cattod.2011.02.061

    Article  Google Scholar 

  26. Ramanathan S, Oyama ST (1995) New catalysts for hydroprocessing: transition metal carbides and nitrides. J Phys Chem 99:16365–16372. doi:10.1021/j100044a025

    Article  CAS  Google Scholar 

  27. Pecoraro TA, Chianelli RR (1981) Hydrodesulfurization catalysis by transition metal sulfides. J Catal 67:430–445. doi:10.1016/0021-9517(81)90303-1

    Article  CAS  Google Scholar 

  28. Navarro R, Fierro JLG, Vasudevan PT, Cambra JF, Güemez MB, Arias PL (1999) Dibenzothiophene hydrodesulfurization on HY-zeolite-supported transition metal sulfide catalysts. Fuel Process Technol 61:73–88. doi:10.1016/S0378-3820(99)00031-4

    Article  CAS  Google Scholar 

  29. Infantes-Molina A, Romero-Perez A, Finocchio E, Busca G, Jiménez-López A, Rodriguez-Castellón E (2013) HDS and HDN on SBA-supported RuS2 catalysts promoted by Pt and Ir. J Catal 305:101–117. doi:10.1016/j.jcat.2013.05.001

    Article  CAS  Google Scholar 

  30. Popov A, Kondratieva E, Goupil JM, Mariey L, Bazin P, Gilson J-P, Travert A, Mauge F (2010) J Phys Chem C 114:15661–15670. doi:10.1021/jp101949j

    Article  CAS  Google Scholar 

  31. Popov A, Kondratieva E, Gilson J-P, Mariey L, Travert A, Mauge F (2011) IR study of the interaction of phenol with oxides and sulfided CoMo catalysts for bio-fuels hydrodeoxygenation. Catal Today 172:132–135. doi:10.1016/j.cattod.2011.02.010

    Article  CAS  Google Scholar 

  32. Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis. VCH, Weinheim

    Book  Google Scholar 

  33. Nava R, Pawelec B, Castaño P, Álvarez-Galván MC, Loricera CV, Fierro JLG (2009) Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl Catal B 92:154–167. doi:10.1016/j.apcatb.2009.07.014

    Article  CAS  Google Scholar 

  34. Raje AP, Liaw S-J, Srinivasan R, Davis BH (1995) Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha I. Catalyst preparation, characterization and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen. Appl Catal A 150:297–318. doi:10.1016/j.cattod.2011.02.010

    Article  Google Scholar 

  35. Massoth FE, Politzer P, Concha MC, Murray JS, Jakowski J, Simons J (2006) Catalytic hydrodeoxygenation of methyl-substituted phenols: correlation of kinetic parameters with molecular properties. J Phys Chem B 110:14283–14291. doi:10.1021/jp057332g

    Article  CAS  Google Scholar 

  36. Kallury RKMR, Restivo WM, Tidwell TT, Boocock DGB, Crimi A, Douglas J (1985) Hydrodeoxygenation of hydroxy, methoxy and methyl phenols with molybdenum oxide/nickel oxide/alumina catalyst. J Catal 96:535–543. doi:10.1016/0021-9517(85)90321-5

    Article  CAS  Google Scholar 

  37. Echeandia S, Arias PL, Barrio VL, Pawelec B, Fierro JLG (2010) Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: effect of tungsten precursors. Appl Catal B 101:1–12. doi:10.1016/j.apcatb.2010.08.018

    Article  CAS  Google Scholar 

  38. Yakovlev VA, Khromova SA, Sherstyuk OV, Dundich VO, Ermakov DY, Novopashina VM, Lebedev MY, Bulavchenko O, Parmon VN (2009) Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal Today 144:362–366. doi:10.1016/j.cattod.2009.03.002

    Article  CAS  Google Scholar 

  39. Labruyère F, Lacroix M, Schweich D, Breysse M (1997) High-pressure temperature-programmed reduction of sulfided catalysts. J Catal 167:464–469. doi:10.1006/jcat.1997.1602

    Article  Google Scholar 

  40. Magnus PJ, Riezebos A, van Langeveld AD, Moulijn JA (1995) Temperature-programmed reduction and HDS activity of sulfided transition metal catalysts: formation of nonstoichiometric sulfur. J Catal 151:178–191. doi:10.1006/jcat.1995.1020

    Article  Google Scholar 

  41. Berhault G, Lacroix M, Breysse M, Maugé F, Lavalley JC, Qu L (1997) Characterization of acid-base paired sites on silica-supported RuS2 by infrared spectroscopy and methyl mercaptan condensation reaction. J Catal 170:37–45. doi:10.1006/jcat.1997.1733

    Article  CAS  Google Scholar 

  42. Castillo-Villalón P, Ramírez J, Maugé F (2008) Structure, stability and activity of RuS2 supported on alumina. J Catal 260:65–74. doi:10.1016/j.jcat.2008.08.015

    Article  Google Scholar 

  43. Mitchell PCH, Scott CE, Bonnelle JP, Grimblot JG (1987) Ru/alumina and Ru-Mo/alumina catalysts: an XPS study. J Catal 107:482–489. doi:10.1016/0021-9517(87)90312-5

    Article  CAS  Google Scholar 

  44. De los Reyes JA (2007) Ruthenium sulfide supported on alumina as hydrotreating catalyst. Appl Catal A. 322:106–112. doi:10.1016/j.apcata.2007.01.004

    Article  Google Scholar 

  45. Wellenbüscher J, Muhler M, Mahdi W, Sauerlandt U, Schütze J, Ertl G, Schlögl R (1994) Ruthenium supported on zeolite A: preparation and characterisation of a stable catalyst for ammonia synthesis. Catal Lett 25:61–74. doi:10.1007/BF00815416

    Article  Google Scholar 

  46. Kuhn M, Rodríguez JA (1995) The interaction of sulfur with Ag/Pt(111) surfaces: silver-promoted sulfidation of platinum. J Catal 154:355–363. doi:10.1006/jcat.1995.1177

    Article  CAS  Google Scholar 

  47. Fuggle JC, Martensson N (1980) Core-level binding energies in metals. J Electron Spectrosc 21:275–281. doi:10.1021/jp057332g

    Article  CAS  Google Scholar 

  48. Briggs D, Seah MP (eds) (1990) Practical surface analysis, auger and X-ray photoelectron spectroscopy, vol 1, 2nd edn. Wiley Interscience, Chichester

    Google Scholar 

  49. Gmellin Handbuch der Anorganischen Chemie, 8. Aufgabe, Verlag Chemie GmbH, Weinheim, 1939, p 75

  50. Hensen EJM, Lardinois HJ, de Beer VHJ, van Veen JAR, van Santen RA (1999) Hydrogen-deuterium equilibration over transition metal sulfide catalysts: on the synergetic effect in CoMo catalysts. J Catal 187:95–108. doi:10.1006/jcat.1999.2587

    Article  CAS  Google Scholar 

  51. Wang WY, Yang YQ, Bao JG, Zhuo C (2009) Influence of ultrasonic on the preparation of Ni–Mo–B amorphous catalyst and its performance in phenol hydrodeoxygenation. J Fuel Chem Technol 37:701–706. doi:10.1016/S1872-5813(10)60016-3

    Article  Google Scholar 

  52. Whiffen VML, Smith KJ (2010) Hydrodeoxygenation of 4-methylphenol over unsupported MoP, MoS2, and MoOx catalysts. Energy Fuels 24:4728–4737. doi:10.1021/ef901270h

    Article  CAS  Google Scholar 

  53. Philippe M, Richard F, Hudebine D, Brunet S (2010) Inhibiting effect of oxygenated model compounds on the HDS of dibenzothiophenes over CoMoP/Al2O3 catalyst. Appl Catal A 383:14–23. doi:10.1016/j.apcata.2010.04.055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to MICINN for funding CTQ2012-37925-C03-03 and FEDER Projects, and Project of Excellence RNM 1565 of Junta de Andalucía for financial support. This study is also partially supported by the MICINN (ENE2007-67533-C02-01 Project) and CAM (S2009ENE-1743 Project). The authors thank to Mr. Duncan Cromwell (UNH, USA) for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Infantes-Molina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Infantes-Molina, A., Pawelec, B., Fierro, J.L.G. et al. Effect of Ir and Pt Addition on the HDO Performance of RuS2/SBA-15 Sulfide Catalysts. Top Catal 58, 247–257 (2015). https://doi.org/10.1007/s11244-015-0366-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0366-0

Keywords

Navigation