Skip to main content
Log in

Integration of Anodic and Cathodic Catalysts of Earth-Abundant Materials for Efficient, Scalable CO2 Reduction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A fully integrated electrochemical cell for co-production of formate (HCOO) and oxygen (O2) from carbon dioxide (CO2) and water using only earth-abundant elements has been developed. The process converts CO2 to formate using electrons derived from anodic water oxidation. A novel cathodic catalyst system, consisting of a tin (Sn) cathode in combination with the soluble heterocycle 2-picoline, was identified for CO2 reduction. Water oxidation takes place at a fluorine-doped tin oxide electrode coated with an electrodeposited cobalt oxide (CoOx) electrocatalyst. Use of 2-picoline as a soluble cathodic co-catalyst lowered the overpotential and enhanced the stability of the Sn-mediated CO2 reduction process. Fluorophosphate served as a redox-stable electrolyte to buffer the anode compartment at mildly acidic pH (~ 5 to 5.5), thereby stabilizing the CoOx electrocatalyst and supporting efficient water oxidation. The complete electrochemical cell maintained a stable cell voltage of less than 3 V over 5 days, with an average formate faradaic yield of 34 %. These results are presented together with an economical analysis of large-scale solar-driven production of formate/formic acid from CO2 and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Efficiency derived from: (theoretical cell voltage/measured cell voltage) * formate faradaic yield * photovoltaic efficiency. In this case (1.42/2.7)*0.4*0.2 = 4.2 %.

References

  1. Michel H (2012) Angew Chem Int Ed 51:2516–2518

    Article  CAS  Google Scholar 

  2. Coumou D, Rahmstorf S (2012) Nat Clim Change 2:491–496

    Google Scholar 

  3. Frese Jr KW (1993) In: Sullivan BP, Krist K, Guard HE (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam

  4. Halmann MM, Steinberg M (1999) In: Halmann MM, Steinberg M (eds) Greenhouse gas carbon dioxide mitigation: science and technology. Lewis Publishers, Boca Raton, Florida

    Google Scholar 

  5. DuBois DL (2006) In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  6. Barton Cole E, Bocarsly AB (2010) In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley, Weinheim

    Google Scholar 

  7. Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP (2012) Annu Rev Phys Chem 63:541–569

    Article  CAS  Google Scholar 

  8. Costenin C, Robert M, Savéant J-M (2013) Chem Soc Rev 42:2423–2436

    Article  Google Scholar 

  9. Seshadri G, Lin C, Bocarsly AB (1994) J Electroanal Chem 372:145–150

    Article  CAS  Google Scholar 

  10. Barton EE, Rampulla DM, Bocarsly AB (2008) J Am Chem Soc 130:6342–6344

    Article  CAS  Google Scholar 

  11. Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) J Am Chem Soc 132:11539–11551

    Article  CAS  Google Scholar 

  12. Morris AJ, McGibbon RT, Bocarsly AB (2011) ChemSusChem 4:191–196

    Article  CAS  Google Scholar 

  13. Bocarsly AB, Gibson QD, Morris AJ, L’Esperance RP, Detweiler ZM, Lakkaraju PS, Zeitler EL, Shaw TW (2012) ACS Catal 2:1684–1692

    Article  CAS  Google Scholar 

  14. Keith JA, Carter EA (2012) J Am Chem Soc 134:7580–7583

    Article  CAS  Google Scholar 

  15. Lim C-H, Holder AM, Musgrave CB (2013) J Am Chem Soc 135:142–154

    Article  CAS  Google Scholar 

  16. Keith JA, Carter EA (2013) Chem Sci 4:1490–1496

    Article  CAS  Google Scholar 

  17. Ertem MZ, Konezny SJ, Araujo CM, Batista VS (2013) J Phys Chem Lett 4:745–748

    Article  CAS  Google Scholar 

  18. Hori Y, Kikuchi K, Suzuki S (1985) Chem Lett 14:1695–1698

    Article  Google Scholar 

  19. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrochim Acta 39:1833–1839

    Article  CAS  Google Scholar 

  20. Köleli F, Atilan T, Palamut N, Gizir AM, Aydin R, Hamann CH (2003) J Appl Electrochem 33:447–450

    Article  Google Scholar 

  21. Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K (1990) Bull Chem Soc Jpn 63:2459–2462

    Article  CAS  Google Scholar 

  22. Azuma M, Hashimoto K, Hiramoto M, Watanabe M, Sakata T (1990) J Electrochem Soc 137:1772–1778

    Article  CAS  Google Scholar 

  23. Ikeda S, Takagi T, Ito K (1987) Bull Chem Soc Jpn 60:2517–2522

    Article  CAS  Google Scholar 

  24. Surya Prakash GK, Viva FA, Olah GA (2013) J Power Sources 223:68–73

    Article  Google Scholar 

  25. Li H, Oloman C (2005) J Appl Electrochem 35:955–965

    Article  CAS  Google Scholar 

  26. Li H, Oloman C (2007) J Appl Electrochem 37:1107–1117

    Article  CAS  Google Scholar 

  27. Li H, Oloman C (2006) J Appl Electrochem 36:1105–1115

    Article  CAS  Google Scholar 

  28. Oloman C, Li H (2008) ChemSusChem 1:385–391

    Article  CAS  Google Scholar 

  29. Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) ChemSusChem 4:1301–1310

    Article  CAS  Google Scholar 

  30. Tilak BV, Lu PWT, Colman JE, Srinivasan S (1981) In: Bockris JO’M, Conway BE, Yeager E, White RE (eds) Comprehensive Treatise of Electrochemistry, Vol. 2. Plenum, New York

  31. Rüttinger W, Dismukes GC (1997) Chem Rev 97:1–24

    Article  Google Scholar 

  32. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) ChemCatChem 2:724–761

    Article  CAS  Google Scholar 

  33. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  34. Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Angew Chem Int Ed 50:7238–7266

    Article  CAS  Google Scholar 

  35. Du P, Eisenberg R (2012) Energy Environ Sci 5:6012–6021

    Article  CAS  Google Scholar 

  36. Singh A, Spiccia L (2013) Coord Chem Rev 257:2607–2622. doi:10.1016/j.ccr.2013.02.027

  37. Shafirovich VYa, Strelets VV (1978) Nouv J Chim 2:199–201

  38. Chen Y-WD, Noufi RN (1984) J Electrochem Soc 131:1447–1451

    Article  CAS  Google Scholar 

  39. Kanan MW, Nocera DG (2008) Science 321:1072–1075

    Article  CAS  Google Scholar 

  40. Surendranath Y, Dincă M, Nocera DG (2009) J Am Chem Soc 131:2615–2620

    Article  CAS  Google Scholar 

  41. Gerken JB, Landis EC, Hamers RJ, Stahl SS (2010) ChemSusChem 3:1176–1179

    Article  CAS  Google Scholar 

  42. Gerken JB, McAlpin JG, Chen JYC, Rigsby ML, Casey WH, Britt RD, Stahl SS (2011) J Am Chem Soc 133:14431–14442

    Article  CAS  Google Scholar 

  43. Berner RA, Canfield DE (1989) Am J Sci 289:333–361

    Article  CAS  Google Scholar 

  44. Falkowski PG, Barber RT, Smetacek V (1998) Science 281:200–206

    Article  CAS  Google Scholar 

  45. Yotsuhashi S, Deguchi M, Hashiba H, Zenitani Y, Hinogami R, Yamada Y, Ohkawa K (2012) Appl Phys Lett 100:243904

    Article  Google Scholar 

  46. Tavares S (2010) Bill Seeks to Expedite Land Leases to Solar Developers, Las Vegas Sun

  47. Transmission Losses (2013) U.S. Energy Information Administration, Washington, DC http://www.eia.gov. Accessed 29 June 2013

  48. Nexant Chem Systems (2013) PERP Report: Chlor-Alkali Technology, 01/02S4. Nexant Chem Systems, New York, p 59

  49. Electric Power Monthly (2013) U.S. Energy Information Administration, Washington, DC http://www.eia.gov. Accessed 18 Jun 2013

  50. Kaczur JJ, Cawlfield DW, Woodard Jr KE, Duncan BL, U.S. Patent 5,296,108, 22 Mar 1994

  51. Naam R (2011) Smaller, cheaper, faster: does Moore’s law apply to solar cells? Scientific American, New York. http://blogs.scientificamerican.com. Accessed 18 Jun 2013

  52. A number of relevant reviews and studies by others have been published since the present manuscript was submitted in July 2013. For selected examples, see references [53–65]

  53. Lu X, Leung DYC, Wang H, Leung MKH, Xuan J (2014) ChemElectroChem 1:836–849

  54. Medina-Ramos J, DiMeglio JL, Rosenthal J (2014) J Am Chem Soc 136:8361–8367

  55. Zhang L, Zhu D, Nathanson GM, Hamers RJ (2014) Angew Chem Int Ed 53:9746–9750

  56. Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, Stoll T, Llobet A (2014) Chem Soc Rev 43:7501–7519

  57. Lacy DC, McCrory CCL, Peters JC (2014) Inorg Chem 53:4980–4988

  58. Kang P, Zhang S, Meyer TJ, Brookhart M (2014) Angew Chem Int Ed 53:8709–8713

  59. Risch M, Klingan K, Zaharieva I, Dau H (2014) In: Llobet A (ed) Molecular water oxidation catalysis: a key topic for new sustainable energy conversion schemes. John Wiley & Sons, Ltd., Chichester

  60. Bloor LG, Molina PI, Symes MD, Cronin L (2014) J Am Chem Soc 136:3304–3311

  61. Joya KS, Takanabe K, de Groot HJM (2014) Adv Energy Mater. doi:10.1002/aenm.201400252

  62. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupius M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Chem Rev 113:6621–6658

  63. Bediako DK, Costentin C, Jones EC, Nocera DG, Savéant J-M (2013) J Am Chem Soc 135:10492–10502

  64. Costentin C, Canales JC, Haddou B, Savéant J-M (2013) J Am Chem Soc 135:17671–17674

  65. Portenkirchner E, Enengl C, Enengl S, Hinterberger G, Schlager S, Apaydin D, Neugebauer H, Knör G, Sariciftci NS (2014) ChemElectroChem 1:1543–1548

Download references

Acknowledgments

The authors would like to thank Dr. Charles G. Fry for advice on NMR measurements, Dr. Liliana Lopez Aguilar for assistance with IC-MS analysis, and George Leonard for assistance with GC analysis. Research conducted in the Stahl lab was partially supported by an NSF CCI Grant CHE-0802907 and by NMR facility support under NSF Grant CHE-9629688.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shannon S. Stahl or Emily Barton Cole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parajuli, R., Gerken, J.B., Keyshar, K. et al. Integration of Anodic and Cathodic Catalysts of Earth-Abundant Materials for Efficient, Scalable CO2 Reduction. Top Catal 58, 57–66 (2015). https://doi.org/10.1007/s11244-014-0345-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0345-x

Keywords

Navigation